利用MATLAB求下列函数的极小点: f(X)=x1^2+4x2^2+9x3^2-2x1+18x2

 我来答
钟清竹江卿
2020-02-07 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.4万
采纳率:26%
帮助的人:650万
展开全部
f(x1,x2,x3)=2x1x2+2x1x3+2x2x3对应的实对称矩阵为
a=[(0,1,1)t,(1,0,1)
t,(1,1,0)
t];下面将其对角化:
先求a的特征值,由|ke-a|=|(k,-1,-1)
t,(-1,k,-1)
t,(-1,-1,k)
t
|=(k-2)*(k+1)^2=0
解得:k=2或k=-1(二重)。
下求方程(ke-a)z=0的解向量
对特征值k=2,(2e-a)z=0解得特征向量z=(1,1,1)t,
单位化α1=(1/√3,
1/√3,
1/√3)
t.
对特征值k=-1,(-e-a)z=0解得特征向量z=(1,-1,0)t或(1,0,-1)t,
schmidt正交化得
α2=(1/√2,-1/√2,0)t,α3=(1/√6,1/√6,-2/√6)
t,
取正交矩阵p=(α1,α2,α3)
=[
(1/√3,
1/√3,
1/√3)
t,
(1/√2,-1/√2,0)t,(1/√6,1/√6,-2/√6)
t]
则有ptap=diag(2,-1,-1).
对二次型f(x1,x2,x3)=2x1x2+2x1x3+2x2x3=xtax作正交变换x=py得
f(x)=yt(qtaq)y=2y1^2-y2^2-y3^2.
得到标准型f(y),p为所求正交变换。
t代表对矩阵或向量的转置。
建议找本线性代数的书看看,实际上就是实对称矩阵的对角化。过程比较繁琐,建议检验一下。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式