证明:A乘以A的转置等于零,那么A一定为零矩阵
2个回答
展开全部
用最基本的方法:设A==(a
ij)m*n
分块A==(A1,A2,...,An),Aj==(a
1j,a
2j,...,a
mj)(j==1,2,...n)
则T(A)==T(T(A1),T(A2),...,T(An))
∴AT(A)==∑AjT(Aj)(j==1,2,...n)
显然Aj为m*1阵T(Aj)为1*m阵
故AT(A)必为m*m阵
考虑乘积矩阵对角线的元有(a
1j)^2==(a
2j)^2==...==(a
mj)^2==0
故a
1j==a
2j==...==a
mj==0.又j==1,2,...n
∴a
ij==0,i==1,2...,m,j==1,2,...n
即A==O
得证
ij)m*n
分块A==(A1,A2,...,An),Aj==(a
1j,a
2j,...,a
mj)(j==1,2,...n)
则T(A)==T(T(A1),T(A2),...,T(An))
∴AT(A)==∑AjT(Aj)(j==1,2,...n)
显然Aj为m*1阵T(Aj)为1*m阵
故AT(A)必为m*m阵
考虑乘积矩阵对角线的元有(a
1j)^2==(a
2j)^2==...==(a
mj)^2==0
故a
1j==a
2j==...==a
mj==0.又j==1,2,...n
∴a
ij==0,i==1,2...,m,j==1,2,...n
即A==O
得证
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询