求下列函数的值域与单调性
1个回答
展开全部
判断函数单调性的常用方法
一、定义法
设x1,x2是函数f(x)定义域上任意的两个数,且x1<x2,若f(x1)<f(x2),则此函数为增函数;反知,若f(x1)>f(x2),则此函数为减函数.
二、性质法
除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解题.
若函数f(x)、g(x)在区间b上具有单调性,则在区间b上有:
⑴
f(x)与f(x)+c(c为常数)具有相同的单调性;
⑵
f(x)与c•f(x)当c>0具有相同的单调性,当c<0具有相反的单调性;
⑷当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数;
⑸当f(x)、g(x)都是增(减)函数,则f(x)•g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数;
三、同增异减法
是处理复合函数的单调性问题的常用方法.
对于复合函数y=f
[g(x)]满足“同增异减”法(应注意内层函数的值域),可令
t=g(x),则三个函数
y=f(t)、t=g(x)、y=f
[g(x)]中,若有两个函数单调性相同,则第三个函数为增函数;若有两个函数单调性相反,则第三个函数为减函数.
注:(1)奇函数在对称的两个区间上有相同的单调性,偶函数在对称的两个区间上有相反的单调性;
(2)互为反函数的两个函数有相同的单调性;
(3)如果f(x)在区间d上是增(减)函数,那么f(x)在d的任一子区间上也是增(减)函数.
四、求导法
导数小于0就是递减,大于0递增,等于0,是拐点极值点
求函数值域的常用方法
1.观察法
用于简单的解析式。
y=1-√x≤1,值域(-∞,
1]
y=(1+x)/(1-x)=2/(1-x)-1≠-1,值域(-∞,-1)∪(-1,+∞).
2.配方法
多用于二次(型)函数。
y=x^2-4x+3=(x-2)^2-1≥-1,值域[-1,
+∞)
y=e^2x-4e^x-3=(e^x-2)^2-7≥-7,值域[-7,+∞)
3.
换元法
多用于复合型函数。
通过换元,使高次函数低次化,分式函数整式化,无理函数有理化,超越函数代数以方便求值域。
特别注意中间变量(新量)的变化范围。
y=-x+2√(
x-1)+2
令t=√(x-1),
则t≤0,
x=t^2+1.
y=-t^2+2t+1=-(t-1)^2+2≤1,值域(-∞,
1].
4.
不等式法
用不等式的基本性质,也是求值域的常用方法。
y=(e^x+1)/(e^x-1),
(0
1/(e-1),
y=1+2/(e^x-1)>1+2/(e-1).值域(1+2/(e-1),+∞).
5.
最值法
如果函数f(x)存在最大值m和最小值m.那么值域为[m,m].
因此,求值域的方法与求最值的方法是相通的.
6.
反函数法
有的又叫反解法.
函数和它的反函数的定义域与值域互换.
如果一个函数的值域不易求,而它的反函数的定义域易求.那么,我们通过求后者而得出前者.
7.
单调性法
若f(x)在定义域[a,
b]上是增函数,则值域为[f(a),
f(b)].减函数则值域为
[f(b),
f(a)].
8.
数形结合法
利用函数所表示的几何意义,借助于几何方法或图像法求函数的值域.
一、定义法
设x1,x2是函数f(x)定义域上任意的两个数,且x1<x2,若f(x1)<f(x2),则此函数为增函数;反知,若f(x1)>f(x2),则此函数为减函数.
二、性质法
除了用基本初等函数的单调性之外,利用单调性的有关性质也能简化解题.
若函数f(x)、g(x)在区间b上具有单调性,则在区间b上有:
⑴
f(x)与f(x)+c(c为常数)具有相同的单调性;
⑵
f(x)与c•f(x)当c>0具有相同的单调性,当c<0具有相反的单调性;
⑷当f(x)、g(x)都是增(减)函数,则f(x)+g(x)都是增(减)函数;
⑸当f(x)、g(x)都是增(减)函数,则f(x)•g(x)当两者都恒大于0时也是增(减)函数,当两者都恒小于0时也是减(增)函数;
三、同增异减法
是处理复合函数的单调性问题的常用方法.
对于复合函数y=f
[g(x)]满足“同增异减”法(应注意内层函数的值域),可令
t=g(x),则三个函数
y=f(t)、t=g(x)、y=f
[g(x)]中,若有两个函数单调性相同,则第三个函数为增函数;若有两个函数单调性相反,则第三个函数为减函数.
注:(1)奇函数在对称的两个区间上有相同的单调性,偶函数在对称的两个区间上有相反的单调性;
(2)互为反函数的两个函数有相同的单调性;
(3)如果f(x)在区间d上是增(减)函数,那么f(x)在d的任一子区间上也是增(减)函数.
四、求导法
导数小于0就是递减,大于0递增,等于0,是拐点极值点
求函数值域的常用方法
1.观察法
用于简单的解析式。
y=1-√x≤1,值域(-∞,
1]
y=(1+x)/(1-x)=2/(1-x)-1≠-1,值域(-∞,-1)∪(-1,+∞).
2.配方法
多用于二次(型)函数。
y=x^2-4x+3=(x-2)^2-1≥-1,值域[-1,
+∞)
y=e^2x-4e^x-3=(e^x-2)^2-7≥-7,值域[-7,+∞)
3.
换元法
多用于复合型函数。
通过换元,使高次函数低次化,分式函数整式化,无理函数有理化,超越函数代数以方便求值域。
特别注意中间变量(新量)的变化范围。
y=-x+2√(
x-1)+2
令t=√(x-1),
则t≤0,
x=t^2+1.
y=-t^2+2t+1=-(t-1)^2+2≤1,值域(-∞,
1].
4.
不等式法
用不等式的基本性质,也是求值域的常用方法。
y=(e^x+1)/(e^x-1),
(0
1/(e-1),
y=1+2/(e^x-1)>1+2/(e-1).值域(1+2/(e-1),+∞).
5.
最值法
如果函数f(x)存在最大值m和最小值m.那么值域为[m,m].
因此,求值域的方法与求最值的方法是相通的.
6.
反函数法
有的又叫反解法.
函数和它的反函数的定义域与值域互换.
如果一个函数的值域不易求,而它的反函数的定义域易求.那么,我们通过求后者而得出前者.
7.
单调性法
若f(x)在定义域[a,
b]上是增函数,则值域为[f(a),
f(b)].减函数则值域为
[f(b),
f(a)].
8.
数形结合法
利用函数所表示的几何意义,借助于几何方法或图像法求函数的值域.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询