
y’‘+(y’)^2=1的通解的求解过程
2个回答
展开全部
解:令y'=p,则y''=pdp/dy
代入原方程,化简得
p[dp/dy-2p/(y-1)]=0
==>p=0,或dp/dy-2p/(y-1)=0
显然,p=0是dp/dy-2p/(y-1)=0的解
又,由dp/dy-2p/(y-1)=0,得
dp/dy=2p/(y-1)
==>dp/p=2dy/(y-1)
==>ln│p│=2ln│y-1│+ln│c1│
==>p=c1(y-1)²
(∵p=0是一个解,∴c1是任意常数)
==>y'=c1(y-1)²
==>dy/(y-1)²=c1dx
==>1/(1-y)=c1x+c2
(c2是任意常数)
==>(c1x+c2)(1-y)=1
故原方程的通解是
(c1x+c2)(1-y)=1
(c1,c2是任意常数)。
代入原方程,化简得
p[dp/dy-2p/(y-1)]=0
==>p=0,或dp/dy-2p/(y-1)=0
显然,p=0是dp/dy-2p/(y-1)=0的解
又,由dp/dy-2p/(y-1)=0,得
dp/dy=2p/(y-1)
==>dp/p=2dy/(y-1)
==>ln│p│=2ln│y-1│+ln│c1│
==>p=c1(y-1)²
(∵p=0是一个解,∴c1是任意常数)
==>y'=c1(y-1)²
==>dy/(y-1)²=c1dx
==>1/(1-y)=c1x+c2
(c2是任意常数)
==>(c1x+c2)(1-y)=1
故原方程的通解是
(c1x+c2)(1-y)=1
(c1,c2是任意常数)。
展开全部
解:∵y''+y'=1
==>y''=1-y'²
==>dy'/(1-y'²)=dx
==>[1/(1+y')+1/(1-y')]dy'=2dx
==>ln│(1+y')/(1-y')│=2x+ln│C1│
(C1是积分常数)
==>(1+y')/(1-y')=C1e^(2x)
==>y'=[C1e^(2x)-1]/[C1e^(2x)+1]
==>y=x+ln│C1+e^(-2x)│+C2
(C2是积分常数)
∴原方程的通解是y=x+ln│C1+e^(-2x)│+C2
(C1,C2是积分常数)。
==>y''=1-y'²
==>dy'/(1-y'²)=dx
==>[1/(1+y')+1/(1-y')]dy'=2dx
==>ln│(1+y')/(1-y')│=2x+ln│C1│
(C1是积分常数)
==>(1+y')/(1-y')=C1e^(2x)
==>y'=[C1e^(2x)-1]/[C1e^(2x)+1]
==>y=x+ln│C1+e^(-2x)│+C2
(C2是积分常数)
∴原方程的通解是y=x+ln│C1+e^(-2x)│+C2
(C1,C2是积分常数)。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询