2个回答
展开全部
分析:(1)由四边形ABCD是矩形,可得∠ABE=∠ECF=90°,又由EF⊥AE,利用同角的余角相等,可得∠BAE=∠CEF,然后利用有两组角对应相等的两个三角形相似,即可证得:△ABE∽△ECF;
(2)由BG⊥AC,易证得∠ABH=∠ECM,又由(1)中∠BAH=∠CEM,即可证得△ABH∽△ECM;
(3)首先作MR⊥BC,垂足为R,由AB:BC=MR:RC=1:2,∠AEB=45°,即可求得MR的长,又由EM=
MR
sin45°
,求出AE,EM再利用勾股定理即可解决问题.
解:(1)证明:∵四边形ABCD是矩形,
∴∠ABE=∠ECF=90°.
∵AE⊥EF,∠AEB+∠FEC=90°.
∴∠AEB+∠BAE=90°,
∴∠BAE=∠CEF,
∴△ABE∽△ECF;
(2)解:结论:△ABH∽△ECM.
理由:∵BG⊥AC,
∴∠ABG+∠BAG=90°,
∴∠ABH=∠ECM,
由(1)知,∠BAH=∠CEM,
∴△ABH∽△ECM;
(3)解:作MR⊥BC,垂足为R,
∵AB=BE=EC=2,
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询