初一数学解一元一次不等式

当x,y取任意数时,推测2xy与x^2+y^2的大小关系,并说明理由已知ab=12,求2a^2+2b^2的最小值... 当x,y取任意数时,推测2xy与x^2+y^2的大小关系,并说明理由 已知ab=12,求2a^2+2b^2的最小值 展开
 我来答
春阵度书琴
2020-08-07 · TA获得超过1008个赞
知道小有建树答主
回答量:1733
采纳率:100%
帮助的人:8.1万
展开全部
当x,y取任意数时,推测2xy与x^2+y^2的大小关系,并说明理由
x=3,y=4,2xy=24
,x^2+y^2=9+16=25,x^2+y^2>2xy
x=3,y=3,x^2+y^2=2xy=18
二者关系是x^2+y^2≥2xy。
因为x^2+y^2-2xy=(x-y)^2≥0.即x^2+y^2≥2xy
已知ab=12,求2a^2+2b^2的最小值
2a^2+2b^2≥2根号(2a^2*2b^2)=4ab=48
所以最小值为48
望采纳,谢谢
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式