
高数:已知函数y=e^x-e^(-x)是某个一阶线性微分方程的特解,求这个微分方程.
1个回答
展开全部
可以这样求:
y=e^x-e^(-x)
y'=e^x+e^(-x)
两式相加:y'+y=2e^x
这就是所求的一阶线性微分方程.
y=e^x-e^(-x)
y'=e^x+e^(-x)
两式相加:y'+y=2e^x
这就是所求的一阶线性微分方程.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。
说明
0/200