设三阶矩阵A的特征值为1,2,-3,求|A*+3A+2E|
1个回答
展开全部
A*=|A|A逆
A*α=|A|A逆α
Aα=λα
A逆Aα=λA逆α
α=λA逆α
(|A|/λ)α=A*α
故A*的特征值为|A|/λ
|A|=1*2*(-3)=-6
所以A*的特征值为-6/1,-6/2,-6/3,即-6,-3,2
A*—3A+2E的特征值为
-6-3+2=-7
-3-6+2=-7
2+9+2=13
所以|A*—3A+2E|=-7*-7*13=637
扩展资料
由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。
这m×n 个数称为矩阵A的元素,简称为元,数aij位于矩阵A的第i行第j列,称为矩阵A的(i,j)元,以数 aij为(i,j)元的矩阵可记为(aij)或(aij)m × n,m×n矩阵A也记作Amn。
元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。而行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |