初中数学最小值问题及其应用

 我来答
牛牪犇E6

2021-01-19 · TA获得超过5.9万个赞
知道大有可为答主
回答量:7.2万
采纳率:93%
帮助的人:5207万
展开全部

用运动的观点来探究几何图形变化规律的试题称之为动态几何型试题。 动态几何型试题以运动为载体,集代数与几何的众多知识于一体,并且渗透了分类讨论、转化化归、数形结合,函数方程等重要的数学思想。动态几何中的最大、最小值问题常常利用图形变换过程中的变量与不变量,动中求静,利用变量的有关性质来解决。

动态几何型试题中的求最值问题多出现在中考压轴题中,常见的动态几何型试题有三种类型:点动型试题,线动型试题,形动型试题。

解题的关键是把握以下三点:

  1. 借助图形在运动中产生的函数关系问题来探究几何图形的变化规律。
  2. 借助图形在四种变换(平移、旋转、折叠、相似)过程中的变量与不变量,动中求静,利用变换的有关性质来解决一些几何图形的最值问题。
  3. 解答过程中往往需要综合运用转化思想,分类讨论思想,数形结合思想,方程思想,函数思想等多种数学思想。

一、点动型试题:这类试题通常是在三角形、四边形、函数图像等一些几何图形上,设计一个或几个动点,并对这些点在运动变化的过程中相伴随着的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行研究考察。点动型试题常常集几何、代数知识于一体,数形结合,有较强的综合性。

例如:如图所示,在平面直角坐标系中,顶点为(4,-1)的抛物线交y轴于A点,交x轴于B、C两点(点B在点C的左侧),已知A点坐标为(0,3)。若点P为抛物线上的一个动点,且位于A、C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积。

分析:过点P作平行于y轴的直线交AC于点Q,然后又割补法可得:S△PAC=S△PAQ+S△PCQ,最后将问题转化为S△PAC=½PQ×OC求解。

解答过程:

点评:试题貌似平凡,但细细品味,却有深藏不露的“精彩”,尤其是关于面积最值的探究问题,如果分析方向不正确,也很难找到思路,此外,试题对函数与方程、化归与转化、数形结合、待定系数法等重要的数学思想方法都有较好的体现。

二、线动型试题:这类试题是以线的移动或旋转来揭示图形的性质和变化规律的试题

点评:试题以直角坐标系为背景,以对称性及二次函数为载体,起点不高,但要求较全面,融入了动态几何的变和不变、数形结合、化归等数学思想。解好本题除了必须具有扎实的基础知识外,还需有良好的思维习惯和心理素质。

三、形动型试题:这类试题主要包含图形的平移、旋转、翻折和滑动四大类。

点评:本题结合矩形的性质以及三角形的相似,考查了二次函数的应用,利用数形结合的思想来求解是本题的基本思路。

总之,初中的几何图形动点问题中求最值往往要把一般化为特殊,动中求静,利用数形结合思想、方程思想、函数思想等多种思想来解决问题。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式