∫arcsinxdx的积分公式是什么?

 我来答
小小芝麻大大梦
高粉答主

2022-12-10 · 每个回答都超有意思的
知道大有可为答主
回答量:2.1万
采纳率:98%
帮助的人:974万
展开全部

∫arcsinxdx= xarcsinx + √(1-x²) +C。C为常数。

用分部积分法:∫ u dv = uv - ∫ v du

∫ arcsinx dx

= x arcsinx - ∫ x darcsinx

= xarcsinx - ∫ x / √(1 - x²) dx

= xarcsinx + 1/2 ∫ 1/√(1-x²) d(1-x²)

= xarcsinx + √(1-x²) +C

扩展资料:

求不定积分的方法:

第一类换元其实就是一种拼凑,利用f'(x)dx=df(x);而前面的剩下的正好是关于f(x)的函数,再把f(x)看为一个整体,求出最终的结果。(用换元法说,就是把f(x)换为t,再换回来)。

分部积分,就那固定的几种类型,无非就是三角函数乘上x,或者指数函数、对数函数乘上一个x这类的,记忆方法是把其中一部分利用上面提到的f‘(x)dx=df(x)变形,再用∫xdf(x)=f(x)x-∫f(x)dx这样的公式,当然x可以换成其他g(x)。

常用积分公式:

1)∫0dx=c 

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

8)∫1/(cosx)^2dx=tanx+c

9)∫1/(sinx)^2dx=-cotx+c

10)∫1/√(1-x^2) dx=arcsinx+c

tllau38
高粉答主

2023-12-19 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:2亿
展开全部
∫arcsinx dx
=xarcsinx -∫x/√(1-x^2) dx
=xarcsinx +(1/2)∫d(1-x^2)/√(1-x^2)
=xarcsinx +√(1-x^2) + C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式