求y=x^3 y=-x^2+x+1所围成的图形面积 ,高二数学,用微积分,要过程,速度

 我来答
华源网络
2022-09-09 · TA获得超过5620个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:151万
展开全部
联立y=x^3,y=-x^2+x+1,解得:x=-1,x=1,
故积分区间为:[-1,1],
在[-1,1]曲线y=-x^2+x+1,高于曲线y=x^3,
所以所围成的图形面积
=∫[-1,1](-x^2+x+1-x^3)dx=(-1/3*x^3+2x^2+x-1/4*x^4) |[-1,1]
=29/12-13/12=4/3.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式