设A是m*n的矩阵,证明若对任意m维行向量x和n维列向量,都有xAy=o,则A=0
1个回答
展开全部
证明: 设 A = (aij).
取xi 是第i个分量为1其余分量为0的m维行向量, i=1,2,…,m;
取yj是第j个分量为1其余分量为0的n维列向量, j=1,2,…,n.
则有 xi A yj = aij, i=1,2,…,m; j=1,2,…,n .
若对任意m维行向量x和n维列向量,都有xAy=o, 则必有
xi A yj = aij = 0, i=1,2,…,m; j=1,2,…,n
故有 A = 0.
取xi 是第i个分量为1其余分量为0的m维行向量, i=1,2,…,m;
取yj是第j个分量为1其余分量为0的n维列向量, j=1,2,…,n.
则有 xi A yj = aij, i=1,2,…,m; j=1,2,…,n .
若对任意m维行向量x和n维列向量,都有xAy=o, 则必有
xi A yj = aij = 0, i=1,2,…,m; j=1,2,…,n
故有 A = 0.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询