过椭圆上的点P求椭圆的切线方程

 我来答
暮不语
高粉答主

2022-11-19 · 说的都是干货,快来关注
知道小有建树答主
回答量:421
采纳率:100%
帮助的人:16.2万
展开全部

设椭圆的方程为x^2/a^2+y^2/b^2=1,点P(x0,y0)在椭圆上,
则过点P的椭圆的切线方程为(x·x0)/a^2 + (y·y0)/b^2=1

在实际应用中,只需将对应的x0,y0代入即可得到椭圆在某一个具体点的切线方程。

扩展资料

利用解析几何的方法求椭圆的切线方程的步骤为:

设C:((x^2)/(a^2))+((y^2)/(b^2))=1-----式1;

(a^2)-(b^2)=(c^2);

F1(-c,0);F2(c,0);P(xp,yp)

AB:(y-yp)=k(x-xp)=>y=kx+(yp-kxp);令m=yp-kxp=>AB:y=kx+m-----式2;

联立式1和式2消去y得:((k^2)+((b^2)/(a^2)))(x^2)+2kmx+((m^2)-(b^2))=0;

因为直线AB切椭圆C于点P,所以上式只有唯一解,则:

4((km)^2)-4((k^2)+((b^2)/(a^2)))((m^2)-(b^2))=0=>m^2=((ak)^2)+(b^2);

m^2=(yp-kxp)^2=((yp)^2)+((kxp)^2)-2kxpyp=((ak)^2)+(b^2);

=>((a^2)-(xp^2))(k^2)+2xpypk+((b^2)-(yp^2));

由根的判别式得:4((xpyp)^2)-4((a^2)-(xp^2))((b^2)-(yp^2))=0;

所以k值有唯一解:k=(-2xpyp)/(2((a^2)-(xp^2)))=-xpyp/((a^2)-(xp^2));

由式1得:(a^2)-(xp^2)=(ayp/b)^2=>k=-(xp(b^2))/(yp(a^2));

m=yp-kxp=(((ypa)^2)+((xpb)^2))/(yp(a^2))=((ab)^2)/(yp(a^2))=(b^2)/yp;

设A0F1、B0F2分别过F1、F2垂直AB于A0、B0;

A0F1:(y-0)=(-1/k)(x+c)=>x+ky+c=0-----式3;

联立式2和式3消去y得:x=-(km+c)/((k^2)+1);

联立式2和式3消去x得:y= (m-kc)/((k^2)+1);

则:A0:(-(km+c)/((k^2)+1),(m-kc)/((k^2)+1))

参考资料百度百科-椭圆

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式