什么是直角平面坐标系
展开全部
平面直角坐标系的概念:
在平面内画两条互相垂直,并且有公共原点的数轴.简称直角坐标系.平面直角坐标系有两个坐标轴,其中横轴为X轴(x-axis),取向右方向为正方向;纵轴为Y(y-axis)轴,取向上为正方向.坐标系所在平面叫做坐标平面,两坐标轴的公共原点叫做平面直角坐标系的原点.X轴和Y轴把坐标平面分成四个象限,右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限.象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限.一般情况下,x轴和y轴取相同的单位长度.
点的坐标:
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标(coordinate).反过来,对于任何一个坐标,(我们可以在坐标平面内确定它所表示的一个点.
对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(ordered pair)(a,b)叫做点C的坐标.
一个点在不同的象限或坐标轴上,点的坐标不一样.
特殊位置的点的坐标的特点:
1.x轴上的点的纵坐标为零;y轴上的点的横坐标为零.
2.第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数.
3.在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴.
4.点到轴及原点的距离
点到x轴的距离为|y|; 点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;
在平面直角坐标系中对称点的特点:
1.关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数.
2.关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数.
3.关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数.
各象限内和坐标轴上的点和坐标的规律:
第一象限:(+,+)
第二象限:(-,+)
第三象限:(-,-)
第四象限:(+,-)
x轴正方向:(+,0)
x轴负方向:(-,0)
y轴正方向:(0,+)
y轴负方向:(0,-)
x轴上的点的纵坐标为0,y轴上的点的横坐标为0.
在平面内画两条互相垂直,并且有公共原点的数轴.简称直角坐标系.平面直角坐标系有两个坐标轴,其中横轴为X轴(x-axis),取向右方向为正方向;纵轴为Y(y-axis)轴,取向上为正方向.坐标系所在平面叫做坐标平面,两坐标轴的公共原点叫做平面直角坐标系的原点.X轴和Y轴把坐标平面分成四个象限,右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限.象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限.一般情况下,x轴和y轴取相同的单位长度.
点的坐标:
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标(coordinate).反过来,对于任何一个坐标,(我们可以在坐标平面内确定它所表示的一个点.
对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(ordered pair)(a,b)叫做点C的坐标.
一个点在不同的象限或坐标轴上,点的坐标不一样.
特殊位置的点的坐标的特点:
1.x轴上的点的纵坐标为零;y轴上的点的横坐标为零.
2.第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数.
3.在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴.
4.点到轴及原点的距离
点到x轴的距离为|y|; 点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;
在平面直角坐标系中对称点的特点:
1.关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数.
2.关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数.
3.关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数.
各象限内和坐标轴上的点和坐标的规律:
第一象限:(+,+)
第二象限:(-,+)
第三象限:(-,-)
第四象限:(+,-)
x轴正方向:(+,0)
x轴负方向:(-,0)
y轴正方向:(0,+)
y轴负方向:(0,-)
x轴上的点的纵坐标为0,y轴上的点的横坐标为0.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
长荣科机电
2024-10-27 广告
2024-10-27 广告
直角坐标机器人,作为深圳市长荣科机电设备有限公司的明星产品之一,以其高精度、高稳定性在自动化生产线上发挥着关键作用。该机器人采用直线电机或精密导轨驱动,能在电商平台Y、Z三个直角坐标轴上实现精准定位与运动控制,广泛应用于电子装配、包装、检测...
点击进入详情页
本回答由长荣科机电提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询