10个回答
展开全部
首先若a=0,是个一次增函数,显然成立
当a≠0时,是个二次函数,分a>0,a<0两种情况讨论
当a>0时,你画画图,函数图像开口向上,在区间上是一段下滑曲线,或者下滑后上升曲线,是不可能满足要求的
所以a<0,那么开口向下,可以满足要求
此函数的对称轴是x=-1/a
要满足题意,只有当 -1/a≥4时行
解得0>a≥-1/4 (a是负数)
综合a=0也行的取值
所以a的取值范围是 0≥a≥-1/4
当a≠0时,是个二次函数,分a>0,a<0两种情况讨论
当a>0时,你画画图,函数图像开口向上,在区间上是一段下滑曲线,或者下滑后上升曲线,是不可能满足要求的
所以a<0,那么开口向下,可以满足要求
此函数的对称轴是x=-1/a
要满足题意,只有当 -1/a≥4时行
解得0>a≥-1/4 (a是负数)
综合a=0也行的取值
所以a的取值范围是 0≥a≥-1/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由函数图像可知,对称轴为:-1/a
当a>0时,函数在(-∞,-1/a)为减函数,不满足条件
当a<0时,
此时-1/a≥4
求得:-1/4≤a<0
当a=0时,
f(x)=2x-3在(-∞,+∞)单调递增
综上所述,a的取值范围是[-1/4,0]
当a>0时,函数在(-∞,-1/a)为减函数,不满足条件
当a<0时,
此时-1/a≥4
求得:-1/4≤a<0
当a=0时,
f(x)=2x-3在(-∞,+∞)单调递增
综上所述,a的取值范围是[-1/4,0]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a=0时成立
a不=0时由已知得f(x)'=2ax+2,另f(x)'>0,解得x>-1/a(a>0)或x<-1/a(a<0)
又其增区间是(-无穷,4),所以取a<0,且4<=-1/a,得到-1/4<=a<0
所以-1/4=<a<=0
a不=0时由已知得f(x)'=2ax+2,另f(x)'>0,解得x>-1/a(a>0)或x<-1/a(a<0)
又其增区间是(-无穷,4),所以取a<0,且4<=-1/a,得到-1/4<=a<0
所以-1/4=<a<=0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
若a=0,则f(x)=2x-3,在其定义域内单调递增,符合题意
若a<0,则-1/a≥4,解得-1/4≤a<0
若a>0,则(-∞,-1/a)单调递减,不符题意
综上所述:a∈[-1/4,0]
若a<0,则-1/a≥4,解得-1/4≤a<0
若a>0,则(-∞,-1/a)单调递减,不符题意
综上所述:a∈[-1/4,0]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)a=0时,原式=2x-3,在(-无穷,+无穷)上单调递增,满足条件
当a不等于0时,原式=a(x+1/a)^2-1/a-3
a<0时,则a在(-无穷,-1/a)上单调递增,又-1/a≥4,解得a≥-1/4
所以-1/4≤a<0
a>0时,无解
终上所述 -1/4≤a≤0
当a不等于0时,原式=a(x+1/a)^2-1/a-3
a<0时,则a在(-无穷,-1/a)上单调递增,又-1/a≥4,解得a≥-1/4
所以-1/4≤a<0
a>0时,无解
终上所述 -1/4≤a≤0
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询