哪里有普通高中课程标准实验教科书 数学 必修1的DOC下载 20
第二章基本初等函数(Ⅰ)2.1指数函数2.2对数函数2.3幂函数小结直接有内容可以复制下来的也可以...
第二章 基本初等函数(Ⅰ)
2.1 指数函数
2.2 对数函数
2.3 幂函数
小结
直接有内容可以复制下来的 也可以 展开
2.1 指数函数
2.2 对数函数
2.3 幂函数
小结
直接有内容可以复制下来的 也可以 展开
2个回答
展开全部
指数函数及其性质
(一)指数函数的概念
一般地,函数叫做指数函数(exponential function),其中x是自变量,函数的定义域为R.
注意: 指数函数的定义是一个形式定义,要引导学生辨析;
注意指数函数的底数的取值范围,引导学生分析底数为什么不能是负数、零和1.
巩固练习:利用指数函数的定义解决(教材P68例2、3)
(二)指数函数的图象和性质
问题:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗?
研究方法:画出函数的图象,结合图象研究函数的性质.
研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.
探索研究:
1.在同一坐标系中画出下列函数的图象:
(1)
(2)
(3)
(4)
(5)
2.从画出的图象中你能发现函数的图象和函数的图象有什么关系?可否利用的图象画出的图象?
3.从画出的图象(、和)中,你能发现函数的图象与其底数之间有什么样的规律?
4.你能根据指数函数的图象的特征归纳出指数函数的性质吗?
图象特征 函数性质
向x、y轴正负方向无限延伸 函数的定义域为R
图象关于原点和y轴不对称 非奇非偶函数
函数图象都在x轴上方 函数的值域为R+
函数图象都过定点(0,1)
自左向右看,
图象逐渐上升 自左向右看,
图象逐渐下降 增函数 减函数
在第一象限内的图象纵坐标都大于1 在第一象限内的图象纵坐标都小于1
在第二象限内的图象纵坐标都小于1 在第二象限内的图象纵坐标都大于1
图象上升趋势是越来越陡 图象上升趋势是越来越缓 函数值开始增长较慢,到了某一值后增长速度极快; 函数值开始减小极快,到了某一值后减小速度较慢;
利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,值域是或;(2)若,则;取遍所有正数当且仅当;(3)对于指数函数,总有;(4)当时,若,则;
(三)典型例题
例1.(教材P66例6).
解:(略)
问题:你能根据本例说出确定一个指数函数需要几个条件吗?
例2.(教材P66例7)
解:(略)
问题:你能根据本例说明怎样利用指数函数的性质判断两个幂的大小?
说明:规范利用指数函数的性质判断两个幂的大小方法、步骤与格式.
巩固练习:(教材P69习题A组第7题)
(一)指数函数的概念
一般地,函数叫做指数函数(exponential function),其中x是自变量,函数的定义域为R.
注意: 指数函数的定义是一个形式定义,要引导学生辨析;
注意指数函数的底数的取值范围,引导学生分析底数为什么不能是负数、零和1.
巩固练习:利用指数函数的定义解决(教材P68例2、3)
(二)指数函数的图象和性质
问题:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗?
研究方法:画出函数的图象,结合图象研究函数的性质.
研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.
探索研究:
1.在同一坐标系中画出下列函数的图象:
(1)
(2)
(3)
(4)
(5)
2.从画出的图象中你能发现函数的图象和函数的图象有什么关系?可否利用的图象画出的图象?
3.从画出的图象(、和)中,你能发现函数的图象与其底数之间有什么样的规律?
4.你能根据指数函数的图象的特征归纳出指数函数的性质吗?
图象特征 函数性质
向x、y轴正负方向无限延伸 函数的定义域为R
图象关于原点和y轴不对称 非奇非偶函数
函数图象都在x轴上方 函数的值域为R+
函数图象都过定点(0,1)
自左向右看,
图象逐渐上升 自左向右看,
图象逐渐下降 增函数 减函数
在第一象限内的图象纵坐标都大于1 在第一象限内的图象纵坐标都小于1
在第二象限内的图象纵坐标都小于1 在第二象限内的图象纵坐标都大于1
图象上升趋势是越来越陡 图象上升趋势是越来越缓 函数值开始增长较慢,到了某一值后增长速度极快; 函数值开始减小极快,到了某一值后减小速度较慢;
利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,值域是或;(2)若,则;取遍所有正数当且仅当;(3)对于指数函数,总有;(4)当时,若,则;
(三)典型例题
例1.(教材P66例6).
解:(略)
问题:你能根据本例说出确定一个指数函数需要几个条件吗?
例2.(教材P66例7)
解:(略)
问题:你能根据本例说明怎样利用指数函数的性质判断两个幂的大小?
说明:规范利用指数函数的性质判断两个幂的大小方法、步骤与格式.
巩固练习:(教材P69习题A组第7题)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询