因数和约数一样吗?
展开全部
不一样.
(1) 约数必须在整除的前提下才存在,而因数是从乘积的角度来提出的。如果数a与数b相乘的积是数c,a与b都是c的因数。
(2) 约数只能对在整数范围内而言,而因数就不限于整数的范围。
例如:6×8=48。既可以说6和8都是48的因数,也可以说6和8都是48的约数。
又如:0.9×8=7.2。虽然可以说0.9和8都是7.2的因数,却不能说0.9和8是7.2的约数。
从这一点来看,一个数的因数有可能大于它本身,而约数不能大于这个数的本身。
(3) 对于一个整数,凡能整除它的数,都是这个整数的约数。
例如:1、2、4、8、16都能整除16,因此,1、2、4、8、16也都是16的约数。而当一个数被分解成两个或几个数相乘时,因数的个数就受到了限定。
又如:2×8=16。只能说2和8是16的因数,而不能说1、2、4、8、16都是的因数,因为1×2×4×8×16的结果,并不等于16.
(1) 约数必须在整除的前提下才存在,而因数是从乘积的角度来提出的。如果数a与数b相乘的积是数c,a与b都是c的因数。
(2) 约数只能对在整数范围内而言,而因数就不限于整数的范围。
例如:6×8=48。既可以说6和8都是48的因数,也可以说6和8都是48的约数。
又如:0.9×8=7.2。虽然可以说0.9和8都是7.2的因数,却不能说0.9和8是7.2的约数。
从这一点来看,一个数的因数有可能大于它本身,而约数不能大于这个数的本身。
(3) 对于一个整数,凡能整除它的数,都是这个整数的约数。
例如:1、2、4、8、16都能整除16,因此,1、2、4、8、16也都是16的约数。而当一个数被分解成两个或几个数相乘时,因数的个数就受到了限定。
又如:2×8=16。只能说2和8是16的因数,而不能说1、2、4、8、16都是的因数,因为1×2×4×8×16的结果,并不等于16.
展开全部
不一样.
(1)
约数必须在整除的前提下才存在,而因数是从乘积的角度来提出的。如果数a与数b相乘的积是数c,a与b都是c的因数。
(2)
约数只能对在整数范围内而言,而因数就不限于整数的范围。
例如:6×8=48。既可以说6和8都是48的因数,也可以说6和8都是48的约数。
又如:0.9×8=7.2。虽然可以说0.9和8都是7.2的因数,却不能说0.9和8是7.2的约数。
从这一点来看,一个数的因数有可能大于它本身,而约数不能大于这个数的本身。
(3)
对于一个整数,凡能整除它的数,都是这个整数的约数。
例如:1、2、4、8、16都能整除16,因此,1、2、4、8、16也都是16的约数。而当一个数被分解成两个或几个数相乘时,因数的个数就受到了限定。
又如:2×8=16。只能说2和8是16的因数...不一样.
(1)
约数必须在整除的前提下才存在,而因数是从乘积的角度来提出的。如果数a与数b相乘的积是数c,a与b都是c的因数。
(2)
约数只能对在整数范围内而言,而因数就不限于整数的范围。
例如:6×8=48。既可以说6和8都是48的因数,也可以说6和8都是48的约数。
又如:0.9×8=7.2。虽然可以说0.9和8都是7.2的因数,却不能说0.9和8是7.2的约数。
从这一点来看,一个数的因数有可能大于它本身,而约数不能大于这个数的本身。
(3)
对于一个整数,凡能整除它的数,都是这个整数的约数。
例如:1、2、4、8、16都能整除16,因此,1、2、4、8、16也都是16的约数。而当一个数被分解成两个或几个数相乘时,因数的个数就受到了限定。
又如:2×8=16。只能说2和8是16的因数,而不能说1、2、4、8、16都是的因数,因为1×2×4×8×16的结果,并不等于16.
不一样
约数和因数的区别有三点:1数域不同。约数只能是自然数,而因数可以是任何数。
2关系不同。约数是对两个自然数的整除关系而言,只要两个数是自然数,就能确定它们之间是否存在约数关系,如:40÷5=8,40能被5整除,5就是40的约数,12÷10=1.2,12不能被10整除,10不是12的约数。因数是两个或两个以上的数对它们的乘积关系而言的。如:8×0.2=1.6,8和0.2都是积1.6的因数,离开乘积算式就没有因数了。
3大小关系不同。当数a是数b的约数时,a不能大于b,当a是b的因数时,a可以大于b,也可以小于b。例如,5是60的约数,54.8
(1)
约数必须在整除的前提下才存在,而因数是从乘积的角度来提出的。如果数a与数b相乘的积是数c,a与b都是c的因数。
(2)
约数只能对在整数范围内而言,而因数就不限于整数的范围。
例如:6×8=48。既可以说6和8都是48的因数,也可以说6和8都是48的约数。
又如:0.9×8=7.2。虽然可以说0.9和8都是7.2的因数,却不能说0.9和8是7.2的约数。
从这一点来看,一个数的因数有可能大于它本身,而约数不能大于这个数的本身。
(3)
对于一个整数,凡能整除它的数,都是这个整数的约数。
例如:1、2、4、8、16都能整除16,因此,1、2、4、8、16也都是16的约数。而当一个数被分解成两个或几个数相乘时,因数的个数就受到了限定。
又如:2×8=16。只能说2和8是16的因数...不一样.
(1)
约数必须在整除的前提下才存在,而因数是从乘积的角度来提出的。如果数a与数b相乘的积是数c,a与b都是c的因数。
(2)
约数只能对在整数范围内而言,而因数就不限于整数的范围。
例如:6×8=48。既可以说6和8都是48的因数,也可以说6和8都是48的约数。
又如:0.9×8=7.2。虽然可以说0.9和8都是7.2的因数,却不能说0.9和8是7.2的约数。
从这一点来看,一个数的因数有可能大于它本身,而约数不能大于这个数的本身。
(3)
对于一个整数,凡能整除它的数,都是这个整数的约数。
例如:1、2、4、8、16都能整除16,因此,1、2、4、8、16也都是16的约数。而当一个数被分解成两个或几个数相乘时,因数的个数就受到了限定。
又如:2×8=16。只能说2和8是16的因数,而不能说1、2、4、8、16都是的因数,因为1×2×4×8×16的结果,并不等于16.
不一样
约数和因数的区别有三点:1数域不同。约数只能是自然数,而因数可以是任何数。
2关系不同。约数是对两个自然数的整除关系而言,只要两个数是自然数,就能确定它们之间是否存在约数关系,如:40÷5=8,40能被5整除,5就是40的约数,12÷10=1.2,12不能被10整除,10不是12的约数。因数是两个或两个以上的数对它们的乘积关系而言的。如:8×0.2=1.6,8和0.2都是积1.6的因数,离开乘积算式就没有因数了。
3大小关系不同。当数a是数b的约数时,a不能大于b,当a是b的因数时,a可以大于b,也可以小于b。例如,5是60的约数,54.8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不一样.
(1) 约数必须在整除的前提下才存在,而因数是从乘积的角度来提出的。如果数a与数b相乘的积是数c,a与b都是c的因数。
(2) 约数只能对在整数范围内而言,而因数就不限于整数的范围。
例如:6×8=48。既可以说6和8都是48的因数,也可以说6和8都是48的约数。
又如:0.9×8=7.2。虽然可以说0.9和8都是7.2的因数,却不能说0.9和8是7.2的约数。
从这一点来看,一个数的因数有可能大于它本身,而约数不能大于这个数的本身。
(3) 对于一个整数,凡能整除它的数,都是这个整数的约数。
例如:1、2、4、8、16都能整除16,因此,1、2、4、8、16也都是16的约数。而当一个数被分解成两个或几个数相乘时,因数的个数就受到了限定。
又如:2×8=16。只能说2和8是16的因数,而不能说1、2、4、8、16都是的因数,因为1×2×4×8×16的结果,并不等于16.
不一样
约数和因数的区别有三点:1数域不同。约数只能是自然数,而因数可以是任何数。
2关系不同。约数是对两个自然数的整除关系而言,只要两个数是自然数,就能确定它们之间是否存在约数关系,如:40÷5=8,40能被5整除,5就是40的约数,12÷10=1.2,12不能被10整除,10不是12的约数。因数是两个或两个以上的数对它们的乘积关系而言的。如:8×0.2=1.6,8和0.2都是积1.6的因数,离开乘积算式就没有因数了。
3大小关系不同。当数a是数b的约数时,a不能大于b,当a是b的因数时,a可以大于b,也可以小于b。例如,5是60的约数,5< 60,8是4.8的因数,8 >4.8
(1) 约数必须在整除的前提下才存在,而因数是从乘积的角度来提出的。如果数a与数b相乘的积是数c,a与b都是c的因数。
(2) 约数只能对在整数范围内而言,而因数就不限于整数的范围。
例如:6×8=48。既可以说6和8都是48的因数,也可以说6和8都是48的约数。
又如:0.9×8=7.2。虽然可以说0.9和8都是7.2的因数,却不能说0.9和8是7.2的约数。
从这一点来看,一个数的因数有可能大于它本身,而约数不能大于这个数的本身。
(3) 对于一个整数,凡能整除它的数,都是这个整数的约数。
例如:1、2、4、8、16都能整除16,因此,1、2、4、8、16也都是16的约数。而当一个数被分解成两个或几个数相乘时,因数的个数就受到了限定。
又如:2×8=16。只能说2和8是16的因数,而不能说1、2、4、8、16都是的因数,因为1×2×4×8×16的结果,并不等于16.
不一样
约数和因数的区别有三点:1数域不同。约数只能是自然数,而因数可以是任何数。
2关系不同。约数是对两个自然数的整除关系而言,只要两个数是自然数,就能确定它们之间是否存在约数关系,如:40÷5=8,40能被5整除,5就是40的约数,12÷10=1.2,12不能被10整除,10不是12的约数。因数是两个或两个以上的数对它们的乘积关系而言的。如:8×0.2=1.6,8和0.2都是积1.6的因数,离开乘积算式就没有因数了。
3大小关系不同。当数a是数b的约数时,a不能大于b,当a是b的因数时,a可以大于b,也可以小于b。例如,5是60的约数,5< 60,8是4.8的因数,8 >4.8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
8的因数.2=1:40÷5=8,而因数可以是任何数不一样
约数和因数的区别有三点.2都是积1.6,如,也可以小于b,12不能被10整除.6的因数,40能被5整除。当数a是数b的约数时。
2关系不同,5<,8
>,10不是12的约数,a可以大于b。
3大小关系不同:8×0,a不能大于b,8是4。约数只能是自然数.2,当a是b的因数时。因数是两个或两个以上的数对它们的乘积关系而言的,只要两个数是自然数;
60。如:1数域不同。约数是对两个自然数的整除关系而言,5是60的约数,8和0,就能确定它们之间是否存在约数关系,离开乘积算式就没有因数了;4。例如,12÷10=1,5就是40的约数
约数和因数的区别有三点.2都是积1.6,如,也可以小于b,12不能被10整除.6的因数,40能被5整除。当数a是数b的约数时。
2关系不同,5<,8
>,10不是12的约数,a可以大于b。
3大小关系不同:8×0,a不能大于b,8是4。约数只能是自然数.2,当a是b的因数时。因数是两个或两个以上的数对它们的乘积关系而言的,只要两个数是自然数;
60。如:1数域不同。约数是对两个自然数的整除关系而言,5是60的约数,8和0,就能确定它们之间是否存在约数关系,离开乘积算式就没有因数了;4。例如,12÷10=1,5就是40的约数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
不一样
约数和因数的区别有三点:1数域不同。约数只能是自然数,而因数可以是任何数。
2关系不同。约数是对两个自然数的整除关系而言,只要两个数是自然数,就能确定它们之间是否存在约数关系,如:40÷5=8,40能被5整除,5就是40的约数,12÷10=1.2,12不能被10整除,10不是12的约数。因数是两个或两个以上的数对它们的乘积关系而言的。如:8×0.2=1.6,8和0.2都是积1.6的因数,离开乘积算式就没有因数了。
3大小关系不同。当数a是数b的约数时,a不能大于b,当a是b的因数时,a可以大于b,也可以小于b。例如,5是60的约数,5< 60,8是4.8的因数,8 >4.8
约数和因数的区别有三点:1数域不同。约数只能是自然数,而因数可以是任何数。
2关系不同。约数是对两个自然数的整除关系而言,只要两个数是自然数,就能确定它们之间是否存在约数关系,如:40÷5=8,40能被5整除,5就是40的约数,12÷10=1.2,12不能被10整除,10不是12的约数。因数是两个或两个以上的数对它们的乘积关系而言的。如:8×0.2=1.6,8和0.2都是积1.6的因数,离开乘积算式就没有因数了。
3大小关系不同。当数a是数b的约数时,a不能大于b,当a是b的因数时,a可以大于b,也可以小于b。例如,5是60的约数,5< 60,8是4.8的因数,8 >4.8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询