3个回答
2013-10-31
展开全部
1、实数连续性,是说实数对极限运算封闭
可以把极限运算看成无穷次算术(加减乘除)运算,
有理数(分数)作无穷次算术运算,结果不一定是有理数(可能是无理数)
为了极限运算的结果能够存在,把有理数极限运算的结果叫做实数(包括有理数和无理数)
实数作极限运算,结果仍然在实数范围内,这个就叫实数的连续性(完备性)
2、实数连续性有6个等价定理,包括你说的3个,它们之间可以互相证明
内容太多了,查数学分析书吧
三个定理和实数连续性的等价性,就在于这三个定理所作的运算都能划归无穷次算术运算(极限运算)
比如单调数列,An+1比An加(减)了一点,由于有界,每次加(减)数都比上次小一点(不能超过界限),这样无穷次算下来,由实数定义能保证一定会得到(实数的)结果
闭区间套也是这样,一边累加、另一边累减,两边都不过界
确界的作法跟单调有界数列类似,实数定义能保证把确界作出来
可以把极限运算看成无穷次算术(加减乘除)运算,
有理数(分数)作无穷次算术运算,结果不一定是有理数(可能是无理数)
为了极限运算的结果能够存在,把有理数极限运算的结果叫做实数(包括有理数和无理数)
实数作极限运算,结果仍然在实数范围内,这个就叫实数的连续性(完备性)
2、实数连续性有6个等价定理,包括你说的3个,它们之间可以互相证明
内容太多了,查数学分析书吧
三个定理和实数连续性的等价性,就在于这三个定理所作的运算都能划归无穷次算术运算(极限运算)
比如单调数列,An+1比An加(减)了一点,由于有界,每次加(减)数都比上次小一点(不能超过界限),这样无穷次算下来,由实数定义能保证一定会得到(实数的)结果
闭区间套也是这样,一边累加、另一边累减,两边都不过界
确界的作法跟单调有界数列类似,实数定义能保证把确界作出来
2013-10-31
展开全部
因为实数不可分,有稠密性
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2013-10-31
展开全部
应为一般的是数是连续的,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询