高数题,二重积分求立体的体积! 大学高数题,, 第14题的(4)问 希望可以详细详细写出步骤!

高数题,二重积分求立体的体积!大学高数题,,第14题的(4)问希望可以详细详细写出步骤!最好写在纸上,画出图!难点就是我想不到图,更不会画图!不会我很想知道这种题有什么好... 高数题,二重积分求立体的体积!
大学高数题,,
第14题的(4)问

希望可以详细详细写出步骤!最好写在纸上,画出图! 难点就是我想不到图,更不会画图!不会

我很想知道这种题有什么好的方法?
数学达人快来啊,我在线等你数学高手帮帮我,我很努力
,,,
展开
 我来答
CosaNostra3
2014-06-02 · 超过21用户采纳过TA的回答
知道答主
回答量:66
采纳率:0%
帮助的人:48.5万
展开全部

考虑对称性,只计算第一卦限,再乘以8即可,

在第一卦限上,在XOY平面投影D为1/4圆,x^2+y^2=R^2,在XOZ平面也是1/4圆,而在YOZ平面投影是正方形,

V=8∫[D]∫√(R^2-x^2)dxdy

=8∫[0,R]dx∫[0,√(R^2-x^2)]   dy

=8∫[0,R] [0,√(R

^2-x^2)] √(R^2-x^2)  y dx

=8∫[0,R](R^2-x^2)dx

=8(R^2x-x^3/3[0,R]

=8(R^3-R^3/3)

=16R^3/3. 

 


向左转|向右转


 

也可用一元函数积分作,设圆柱面x^2+y^2=R^2和圆柱面x^2+z^2=R^2垂直相交,

在第一卦限内,公共体部分在YOZ平面上投影是正方形,在平行于YOZ平面上可以切出无数正方形“薄片”,边长分别为φ(x)=√(R^2-x^2),ψ(x)=√(R^2-x^2)

面积S(x)=φ(x)*ψ(x)=R^2-x^2,

∴V=8∫[0,R](R^2-x^2)dx

=8(R^2x-x^3/3)[0,R]

=8(R^3-R^3/3)

=16R^3/3. 

复制别人的⊙﹏⊙

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式