已知an=∫(0→1)x^2(1-x)^ndx,证明级数∑(n=1→∞)an收敛,并求这个级数的和?
2个回答
展开全部
令t=1-x
an=∫(0→1)x^2(1-x)^ndx=∫(0->1) (1-t)^2 t^ndt
=∫(0->1) [t^n-2t^(n+1)+t^(n+2)]dt
=1/(n+1)-2/(n+2)+1/(n+3)
=[1/(n+1)-1/(n+2)]-[1/(n+2)-1/(n+3)]
所以∑an=(1/2-1/3)-(1/3-1/4)+(1/3-1/4)-(1/4-1/5)+....+[1/(n+1)-1/(n+2)]-[1/(n+2)-1/(n+3)]+...
=lim{1/6-[1/(n+2)-1/(n+3)]}
=1/6
所以an收敛,且∑an=1/6
an=∫(0→1)x^2(1-x)^ndx=∫(0->1) (1-t)^2 t^ndt
=∫(0->1) [t^n-2t^(n+1)+t^(n+2)]dt
=1/(n+1)-2/(n+2)+1/(n+3)
=[1/(n+1)-1/(n+2)]-[1/(n+2)-1/(n+3)]
所以∑an=(1/2-1/3)-(1/3-1/4)+(1/3-1/4)-(1/4-1/5)+....+[1/(n+1)-1/(n+2)]-[1/(n+2)-1/(n+3)]+...
=lim{1/6-[1/(n+2)-1/(n+3)]}
=1/6
所以an收敛,且∑an=1/6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询