(2010?庆阳)如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点

(2010?庆阳)如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D.(1)求该抛物线的解析式与顶点D的坐标;(2)以... (2010?庆阳)如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D.(1)求该抛物线的解析式与顶点D的坐标;(2)以B、C、D为顶点的三角形是直角三角形吗?为什么?(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请指出符合条件的点P的位置,并直接写出点P的坐标;若不存在,请说明理由. 展开
 我来答
琳琳后卫军044
2014-08-20 · 超过53用户采纳过TA的回答
知道答主
回答量:138
采纳率:100%
帮助的人:48.2万
展开全部
解:(1)设该抛物线的解析式为y=ax2+bx+c,
由抛物线与y轴交于点C(0,-3),可知c=-3,
即抛物线的解析式为y=ax2+bx-3,
把A(-1,0)、B(3,0)代入,
a?b?3=0
9a+3b?3=0

解得a=1,b=-2.
∴抛物线的解析式为y=x2-2x-3,
∴顶点D的坐标为(1,-4).

(2)以B、C、D为顶点的三角形是直角三角形,
理由如下:
过点D分别作x轴、y轴的垂线,垂足分别为E、F.
在Rt△BOC中,OB=3,OC=3,
∴BC2=18,
在Rt△CDF中,DF=1,CF=OF-OC=4-3=1,
∴CD2=2,
在Rt△BDE中,DE=4,BE=OB-OE=3-1=2,
∴BD2=20,
∴BC2+CD2=BD2,故△BCD为直角三角形.

(3)连接AC,则容易得出△COA∽△CAP,又△PCA∽△BCD,可知Rt△COA∽Rt△BCD,得符合条件的点为O(0,0).
过A作AP1⊥AC交y轴正半轴于P1,可知Rt△CAP1∽Rt△COA∽Rt△BCD,
求得符合条件的点为P1(0,
1
3
)

过C作CP2⊥AC交x轴正半轴于P2,可知Rt△P2CA∽Rt△COA∽Rt△BCD,
求得符合条件的点为P2(9,0).
∴符合条件的点有三个:O(0,0),P1(0,
1
3
)
,P2(9,0).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式