如图,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则以下结论:①△ODC是等边三角形;②BC=2AB;③∠A
如图,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则以下结论:①△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE=S△COE,⑤...
如图,矩形ABCD中,AE平分∠BAD交BC于E,∠CAE=15°,则以下结论:①△ODC是等边三角形;②BC=2AB;③∠AOE=135°;④S△AOE=S△COE,⑤∠AEO=30°其中正确的有( )A.1个B.2个C.3个D.4个
展开
1个回答
展开全部
∵矩形ABCD中,AE平分∠BAD,
∴∠BAE=45°,
∵∠CAE=15°,
∴∠BAO=∠BAE+∠CAE=45°+15°=60°,
又∵矩形中OA=OB=OC=OD,
∴△AOB是等边三角形,
∴∠AOB=∠COD=60°,
∴△ODC是等边三角形,故①正确;
由等边三角形的性质,AB=OA,
∴AC=2AB,
由垂线段最短BC<AC,
∴BC<2AB,故②错误;
∵∠BAE=45°,∠ABE=90°,
∴△ABE是等腰直角三角形,
∴AB=BE,
∴BO=BE,
∵∠COB=180°-60°=120°,
∴∠BOE=
(180°-30°)=75°,
∴∠AOE=∠AOB+∠BOE=60°+75°=135°,∠AEO=30°,故③⑤正确;
∵△AOE和△COE的底边AO=CO,点E到AC的距离相等,
∴S△AOE=S△COE,故④正确;
综上所述,正确的结论是①③④⑤.
故选:D.
∴∠BAE=45°,
∵∠CAE=15°,
∴∠BAO=∠BAE+∠CAE=45°+15°=60°,
又∵矩形中OA=OB=OC=OD,
∴△AOB是等边三角形,
∴∠AOB=∠COD=60°,
∴△ODC是等边三角形,故①正确;
由等边三角形的性质,AB=OA,
∴AC=2AB,
由垂线段最短BC<AC,
∴BC<2AB,故②错误;
∵∠BAE=45°,∠ABE=90°,
∴△ABE是等腰直角三角形,
∴AB=BE,
∴BO=BE,
∵∠COB=180°-60°=120°,
∴∠BOE=
1 |
2 |
∴∠AOE=∠AOB+∠BOE=60°+75°=135°,∠AEO=30°,故③⑤正确;
∵△AOE和△COE的底边AO=CO,点E到AC的距离相等,
∴S△AOE=S△COE,故④正确;
综上所述,正确的结论是①③④⑤.
故选:D.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询