已知等差数列{a n }的前三项为a-1,4,2a,记前n项和为S n .(Ⅰ)设S k =2550,求a和k的值;(Ⅱ)设b
已知等差数列{an}的前三项为a-1,4,2a,记前n项和为Sn.(Ⅰ)设Sk=2550,求a和k的值;(Ⅱ)设bn=Snn,求b3+b7+b11+…+b4n-1的值....
已知等差数列{a n }的前三项为a-1,4,2a,记前n项和为S n .(Ⅰ)设S k =2550,求a和k的值;(Ⅱ)设b n = S n n ,求b 3 +b 7 +b 11 +…+b 4n-1 的值.
展开
展开全部
(Ⅰ)由已知得a 1 =a-1,a 2 =4,a 3 =2a,又a 1 +a 3 =2a 2 , ∴(a-1)+2a=8,即a=3.(2分) ∴a 1 =2,公差d=a 2 -a 1 =2. 由S k =ka 1 +
2k+
即k 2 +k-2550=0.解得k=50或k=-51(舍去). ∴a=3,k=50.(6分) (Ⅱ)由S n =na 1 +
S n =2n+
∴b n =
∴{b n }是等差数列. 则b 3 +b 7 +b 11 +…+b 4n-1 =(3+1)+(7+1)+(11+1)+…+(4n-1+1) =(3+7+11+…+4n-1)+n =
=
∴b 3 +b 7 +b 11 +…+b 4n-1 =2n 2 +2n(12分) |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询