y=∫(0.x) 【(3t+1)/(t^2-t+1)】dt在[0,1]上的最大值
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励30(财富值+成长值)
1个回答
展开全部
y=∫(0->x) (3t+1)/(t^2-t+1)dt
y' =(3x+1)/(x^2-x+1)
=(3x+1)/[(x- 1/2)^2 +3/4] >0
max y = y(1)
max y
=∫(0->1) (3t+1)/(t^2-t+1)dt
= (3/2)∫(0->1) (2t-1)/(t^2-t+1)dt +(5/2)∫(0->1) dt/(t^2-t+1)
= (3/2)ln|t^2-t+1| |(0->1) +(5/2)∫(0->1) dt/(t^2-t+1)
=(5/2)∫(0->1) dt/(t^2-t+1)
consider
t^2-t+1 = (t-1/2)^2+3/4
let
t-1/2 = (√3/2)tany
dt =(√3/2)(secy)^2 dy
t=0 , y = -π/6
t=1, y=π/6
∫(0->1) dt/(t^2-t+1)
=∫(-π/6->π/6) dt/(t^2-t+1)
=(2√3/3) ∫(-π/6->π/6) dy
=2√3π/9
max y
=(5/2)∫(0->1) dt/(t^2-t+1)
=5√3π/9
y' =(3x+1)/(x^2-x+1)
=(3x+1)/[(x- 1/2)^2 +3/4] >0
max y = y(1)
max y
=∫(0->1) (3t+1)/(t^2-t+1)dt
= (3/2)∫(0->1) (2t-1)/(t^2-t+1)dt +(5/2)∫(0->1) dt/(t^2-t+1)
= (3/2)ln|t^2-t+1| |(0->1) +(5/2)∫(0->1) dt/(t^2-t+1)
=(5/2)∫(0->1) dt/(t^2-t+1)
consider
t^2-t+1 = (t-1/2)^2+3/4
let
t-1/2 = (√3/2)tany
dt =(√3/2)(secy)^2 dy
t=0 , y = -π/6
t=1, y=π/6
∫(0->1) dt/(t^2-t+1)
=∫(-π/6->π/6) dt/(t^2-t+1)
=(2√3/3) ∫(-π/6->π/6) dy
=2√3π/9
max y
=(5/2)∫(0->1) dt/(t^2-t+1)
=5√3π/9
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询