设函数f(x)=-x3+bx(b为常数),若函数f(x)在区间(0,1)上单调递增,且方程f(x)=0的根都在区间[-

设函数f(x)=-x3+bx(b为常数),若函数f(x)在区间(0,1)上单调递增,且方程f(x)=0的根都在区间[-2,2]内,则b的取值范围是______.... 设函数f(x)=-x3+bx(b为常数),若函数f(x)在区间(0,1)上单调递增,且方程f(x)=0的根都在区间[-2,2]内,则b的取值范围是 ______. 展开
 我来答
菠萝145
2014-09-12 · 超过54用户采纳过TA的回答
知道答主
回答量:102
采纳率:33%
帮助的人:50.3万
展开全部
∵若函数f(x)在区间(0,1)上单调递增,
∴f'(x)=-3x2+b>0在(0,1)上恒成立
即b>3x2在(0,1)上恒成立,解得b≥3
而f(x)=-x3+bx=-x(x2-b)=0的三个根为0,±
b

∵方程f(x)=0的根都在区间[-2,2]内
b
≤2
解得b≤4
综上所述3≤b≤4
故答案为[3,4]
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式