设随机变量X服从参数为0.5的指数分布,则P{X>E(x)}=___? 10

概率论的题目,帮忙解答下。... 概率论的题目,帮忙解答下。 展开
 我来答
娱乐小八卦啊a
高粉答主

2020-06-05 · 娱乐小八卦,天天都知道
娱乐小八卦啊a
采纳数:256 获赞数:117852

向TA提问 私信TA
展开全部

密度函数是:f(x)=te^(-tx),

E(x)=∫xf(x)dx=∫ txe^(-tx)dx=1/t∫ ye^(-y)dy=1/t,所以E(x)=2。

D(x)= E(X − E(X))^2=E(x^2)-E(x)^2=∫tx^2e^(-tx)dx-1/t^2=1/t^2∫y^2e^(-y)dy -1/t^2= 2/t^2-1/t^2=1/t^2,所以D(x)=4。

指数函数的一个重要特征是无记忆性。这表示如果一个随机变量呈指数分布,当s,t>0时有P(T>t+s|T>t)=P(T>s)。即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。

扩展资料

概率论和统计学中,指数分布是一种连续概率分布。指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、中文维基百科新条目出现的时间间隔等等。

许多电子产品的寿命分布一般服从指数分布。有的系统的寿命分布也可用指数分布来近似。它在可靠性研究中是最常用的一种分布形式。指数分布是伽玛分布和威布尔分布的特殊情况,产品的失效是偶然失效时,其寿命服从指数分布。

指数分布可以看作当威布尔分布中的形状系数等于1的特殊分布,指数分布的失效率是与时间t无关的常数,所以分布函数简单。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式