从1到100中选出两个不同的数,并且这两个数之和大于100,共有几种选法
1个回答
展开全部
从1,2,3,…,97,98,99,100中取出1,有1+100>100,取法数1个;
取出2,有2+100>100,2+99>100,取法数2个;
取出3,取法数3个,
…
取出k,取法数k个,
…
取出50,有50+51>100,50+52>100,…,50+100>100,取法有50个.
所以取出数字1至50,共得取法数N1=1+2+3+…+50=1275.
取出51,有51+52>100,51+53>100,…,51+100>100,共49个;
取出52,则有48个,
…
取出k,取法数100-k个,
…
取出99,只有1个,
取出100,没有符合的情况.
所以取出数字51至100(N1中取过的不在取),则N2=49+48+…+2+1=1225.
故总的取法有N=N1+N2=2500个.
取出2,有2+100>100,2+99>100,取法数2个;
取出3,取法数3个,
…
取出k,取法数k个,
…
取出50,有50+51>100,50+52>100,…,50+100>100,取法有50个.
所以取出数字1至50,共得取法数N1=1+2+3+…+50=1275.
取出51,有51+52>100,51+53>100,…,51+100>100,共49个;
取出52,则有48个,
…
取出k,取法数100-k个,
…
取出99,只有1个,
取出100,没有符合的情况.
所以取出数字51至100(N1中取过的不在取),则N2=49+48+…+2+1=1225.
故总的取法有N=N1+N2=2500个.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询