1个回答
展开全部
显然
1+√3tan10=1+tan60*tan10
=(cos60*cos10+sin60*sin10)/(cos60*cos10)
=2cos(60-10)/cos10
=2cos50/cos10
于是原式
=(2sin50+2sin10*cos50/cos10) * (√2 *sin80)
=2√2 *(sin50*cos10+sin10cos50) *(sin80/cos10)
=2√2 *sin(50+10)
=2√2 *√3/2
=√6
故计算结果为√6
1+√3tan10=1+tan60*tan10
=(cos60*cos10+sin60*sin10)/(cos60*cos10)
=2cos(60-10)/cos10
=2cos50/cos10
于是原式
=(2sin50+2sin10*cos50/cos10) * (√2 *sin80)
=2√2 *(sin50*cos10+sin10cos50) *(sin80/cos10)
=2√2 *sin(50+10)
=2√2 *√3/2
=√6
故计算结果为√6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询