高数 设函数y=f(x)由方程y-x=e^[x(1-y)]确定,求lim n->无穷 n[f(1/
高数设函数y=f(x)由方程y-x=e^[x(1-y)]确定,求limn->无穷n[f(1/n)-1]=求具体推理过程谢谢...
高数 设函数y=f(x)由方程y-x=e^[x(1-y)]确定,求lim n->无穷 n[f(1/n)-1]=求具体推理过程 谢谢
展开
2个回答
展开全部
consider
lim(x->∞) x [ f(1/x) -1]
let
x=1/y
lim(x->∞) x [ f(1/x) -1]
=lim(y->0) [ f(y) -1] /y
=0
y-x= e^[x(1-y)]
y(0) =e^0 =1
y-x= e^[x(1-y)]
d/dx(y-x) = d/dx ( e^[x(1-y)] )
y' -1 = e^[x(1-y)] . ( 1 - xy' - y )
( 1+ xe^[x(1-y)] ) y' = (1-y).e^[x(1-y)]
y' =(1-y).e^[x(1-y)] /( 1+ xe^[x(1-y)] )
y'(0) =(1-y(0)).e^0
=0
f(y) = y(0)+ (y'(0)/1!)y+ (y''(0)/2!)y^2 +....
= 1 + (y''(0)/2!)y^2 +....
f(y)-1 =(y''(0)/2!)y^2 +.... order : at least y^2
lim(x->∞) x [ f(1/x) -1]
let
x=1/y
lim(x->∞) x [ f(1/x) -1]
=lim(y->0) [ f(y) -1] /y
=0
y-x= e^[x(1-y)]
y(0) =e^0 =1
y-x= e^[x(1-y)]
d/dx(y-x) = d/dx ( e^[x(1-y)] )
y' -1 = e^[x(1-y)] . ( 1 - xy' - y )
( 1+ xe^[x(1-y)] ) y' = (1-y).e^[x(1-y)]
y' =(1-y).e^[x(1-y)] /( 1+ xe^[x(1-y)] )
y'(0) =(1-y(0)).e^0
=0
f(y) = y(0)+ (y'(0)/1!)y+ (y''(0)/2!)y^2 +....
= 1 + (y''(0)/2!)y^2 +....
f(y)-1 =(y''(0)/2!)y^2 +.... order : at least y^2
追问
看不懂
追答
泰勒展式
f(x) = f(0) +[f'(0)/1!]x +[f'(0)/1!]x^2 +....
f(0)=1 , f'(0)=0
f(y) = 1 +0.y +[f''(0)/2!]y^2 +....
= 1 +[f''(0)/2!]y^2 +....
f(y) -1 =[f''(0)/2!]y^2 +....
分子 : 阶 : 最小 是2
分母 : 阶 :1
lim(y->0) [ f(y) -1] /y =0
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询