高数 设函数y=f(x)由方程y-x=e^[x(1-y)]确定,求lim n->无穷 n[f(1/

高数设函数y=f(x)由方程y-x=e^[x(1-y)]确定,求limn->无穷n[f(1/n)-1]=求具体推理过程谢谢... 高数 设函数y=f(x)由方程y-x=e^[x(1-y)]确定,求lim n->无穷 n[f(1/n)-1]=求具体推理过程 谢谢 展开
 我来答
hbc3193034
2016-03-08 · TA获得超过10.5万个赞
知道大有可为答主
回答量:10.5万
采纳率:76%
帮助的人:1.4亿
展开全部
7.f(0)=1,设u=1/n→0,对y-x=e^[x(1-y)]求导数得
y'-1=e^[x(1-y)]*(1-y-xy'),
∴{1+xe^[x(1-y)]}y'=1+(1-y)e^[x(1-y)],
∴y'(0)=1,
∴原式→[f(u)-1]/u→f'(0)=1.
更多追问追答
追问
最后求出导数 怎么就变为极限为1了
追答
用罗比达法则。
tllau38
高粉答主

2016-03-08 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:2亿
展开全部
consider
lim(x->∞) x [ f(1/x) -1]
let
x=1/y

lim(x->∞) x [ f(1/x) -1]
=lim(y->0) [ f(y) -1] /y
=0

y-x= e^[x(1-y)]
y(0) =e^0 =1

y-x= e^[x(1-y)]
d/dx(y-x) = d/dx ( e^[x(1-y)] )
y' -1 = e^[x(1-y)] . ( 1 - xy' - y )
( 1+ xe^[x(1-y)] ) y' = (1-y).e^[x(1-y)]
y' =(1-y).e^[x(1-y)] /( 1+ xe^[x(1-y)] )
y'(0) =(1-y(0)).e^0
=0

f(y) = y(0)+ (y'(0)/1!)y+ (y''(0)/2!)y^2 +....
= 1 + (y''(0)/2!)y^2 +....
f(y)-1 =(y''(0)/2!)y^2 +.... order : at least y^2
追问
看不懂
追答
泰勒展式
f(x) = f(0) +[f'(0)/1!]x +[f'(0)/1!]x^2 +....
f(0)=1 , f'(0)=0

f(y) = 1 +0.y +[f''(0)/2!]y^2 +....
= 1 +[f''(0)/2!]y^2 +....
f(y) -1 =[f''(0)/2!]y^2 +....

分子 : 阶 : 最小 是2
分母 : 阶 :1
lim(y->0) [ f(y) -1] /y =0
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式