模拟退火算法的简介
展开全部
模拟退火算法(Simulated Annealing,SA)最早的思想是由N. Metropolis 等人于1953年提出。1983 年,S. Kirkpatrick 等成功地将退火思想引入到组合优化领域。它是基于Monte-Carlo迭代求解策略的一种随机寻优算法,其出发点是基于物理中固体物质的退火过程与一般组合优化问题之间的相似性。模拟退火算法从某一较高初温出发,伴随温度参数的不断下降,结合概率突跳特性在解空间中随机寻找目标函数的全局最优解,即在局部最优解能概率性地跳出并最终趋于全局最优。模拟退火算法是一种通用的优化算法,理论上算法具有概率的全局优化性能,目前已在工程中得到了广泛应用,诸如VLSI、生产调度、控制工程、机器学习、神经网络、信号处理等领域。
模拟退火算法是通过赋予搜索过程一种时变且最终趋于零的概率突跳性,从而可有效避免陷入局部极小并最终趋于全局最优的串行结构的优化算法。
希卓
2024-10-17 广告
2024-10-17 广告
分布式应变监测技术是现代结构健康监测的重要组成部分。它通过在结构内部或表面布置多个应变传感器,实现对结构变形和应变的连续、实时监测。这种技术能够准确捕捉结构在各种载荷和环境条件下的应变响应,为结构的安全评估、损伤预警和寿命预测提供重要数据支...
点击进入详情页
本回答由希卓提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询