如图,在△ABC中,AB=AC,P为BC上的任意一点,求证:AB²-AP²=PB×PC
展开全部
本题可通过构建直角三角形求解,作BC边上的高AF;可在Rt△ABF和Rt△APF中,分别用勾股定理表示出AF的长,联立两式即可求得所证的结论.
---------------------------------------------------------------------------------------------------------------------
解:过A作AF⊥BC于F.
在Rt△ABF中,AF²=AB²-BF²;
在Rt△APF中,AF²=AP²-FP²;
则AB²-BF²=AP²-FP²;
即AB²-AP²=BF²-FP²=(BF+FP)(BF-FP);
∵AB=AC,AF⊥BC,
∴BF=FC(三线合一);
∴BF+FP=CF+FP=PC,BF-FP=BP;
∴AB²-AP²=BP•PC.
//--------------------------------------------------------------------------------------------------------------------
【明教】为您解答,
如若满意,请点击【采纳为满意回答】;如若您有不满意之处,请指出,我一定改正!
希望还您一个正确答复!
祝您学业进步!
---------------------------------------------------------------------------------------------------------------------
解:过A作AF⊥BC于F.
在Rt△ABF中,AF²=AB²-BF²;
在Rt△APF中,AF²=AP²-FP²;
则AB²-BF²=AP²-FP²;
即AB²-AP²=BF²-FP²=(BF+FP)(BF-FP);
∵AB=AC,AF⊥BC,
∴BF=FC(三线合一);
∴BF+FP=CF+FP=PC,BF-FP=BP;
∴AB²-AP²=BP•PC.
//--------------------------------------------------------------------------------------------------------------------
【明教】为您解答,
如若满意,请点击【采纳为满意回答】;如若您有不满意之处,请指出,我一定改正!
希望还您一个正确答复!
祝您学业进步!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询