椭圆中心O,长轴,短轴分别为2a,2b,A.B分别为椭圆的两点,OA垂直OB,求...

椭圆中心O,长轴,短轴分别为2a,2b,A.B分别为椭圆的两点,OA垂直OB,求证1/OA的模平方+1/OB的模平方为定值... 椭圆中心O,长轴,短轴分别为2a,2b,A.B分别为椭圆的两点,OA垂直OB,求证1/OA的模平方+1/OB的模平方为定值 展开
 我来答
贰熙汤欣合
2020-04-08 · TA获得超过4585个赞
知道大有可为答主
回答量:3078
采纳率:32%
帮助的人:202万
展开全部
将椭圆方程改写为:x=acosθ,y=bsinθ,其中θ为OP(x,y)与Ox轴的夹角
设A(x1,y1)对应的是θ1,B(x2,y2)对应的是θ2
根据题意,OA⊥OB,则|θ2-θ1|=π/2
不失一般性,可另θ2=θ1+π/2
则cosθ2=-sinθ1,sinθ2=cosθ1
x1
=
acosθ1,y1
=
bsinθ1;
x2
=
acosθ2
=
-asinθ1,y2
=
bsinθ2
=
bcosθ1
|OA|^2
=
x1^2
+
y1^2
=
a^2cos^2θ1
+
b^2sin^2θ1
|OB|^2
=
x2^2
+
y2^2
=
a^2sin^2θ1
+
b^2cos^2θ1
|OA|^2+|OB|^2
=
(a^2+b^2)*(cos^2θ1+sin^2θ1)
=
a^2+b^2
|OA|^2*|OB|^2
=
(a^2cos^2θ1
+
b^2sin^2θ1)*(a^2sin^2θ1
+
b^2cos^2θ1)
=
(a^4+b^4)*sin^2θ1cos^2θ1
+
a^2b^2*(cos^4θ1+sin^4θ1)
=
(a^4+b^4-2a^2b^2)*sin^2θ1cos^2θ1
+
a^2b^2*(cos^4θ1+sin^4θ1+2sin^2θ1cos^2θ1)
=
(a^2-b^2)^2*sin^2θ1cos^2θ1
+
a^2b^2*(cos^2θ1+sin^2θ1)^2
=
(a^2-b^2)^2*sin^2θ1cos^2θ1
+
a^2b^2
=
(ab)^2
+
(c*sinθ1cosθ1)^2
1/|OA|^2
+
1/|OB|^2
=
(|OA|^2
+
|OB|^2)/(|OA|^2*|OB|^2)
=
(a^2+b^2)/[(ab)^2+(c*sinθ1cosθ1)^2]
似乎不为常数嘛
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
系科仪器
2024-08-02 广告
科仪器致力于为微纳薄膜领域提供精益级测量及控制仪器,包括各种光谱椭偏、激光椭偏、反射式光谱等,从性能参数、使用体验、价格、产品可靠性及工艺拓展性等多个维度综合考量,助客户提高研发和生产效率,以及带给客户更好的使用体验。... 点击进入详情页
本回答由系科仪器提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式