若实数m,n,x,y满足m2+n2=a,x2+y2=b(a≠b),则mx+ny的最大值为?

 我来答
滑振梅施乙
2020-03-07 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:33%
帮助的人:1350万
展开全部
m2+n2=a
x2+y2=b
可以看成两个圆的方程
化为参数方程,为
m=根号a
*cosA
n=根号
a*sinA
x=根号b*cosB
y=根号b*sinB
所以,所求为
(根号ab)*(cosA*cosB+sinAsinB)
=(根号ab)*cos(A-B)
且cos取值范围为-1~1
所以,max=(根号ab)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式