y=sin(ωx+φ)+cos(ωx+φ)=√2sin(ωx+φ+π除4) 为什么?
展开全部
解:∵f(x)=
cos(2x-π/3)+2sin(x-π/4)sin(x+π/4)=cos(2x-π/3)+cos2xcos(π/2)=cos(2x-π/3)
cos(2x-π/3)最小正周期为π
∴
f(x)最小正周期即为π
2sin(x-π/4)sin(x+π/4)=cos(x-π/4-x-π/4)-cos(x-π/4+x+π/4)=-cos2x
f(x)=cos(2x-π/3)-cos2x=cos(2x-π/6-π/6)-cos(2x-π/6+π/6)=2sin(2x-π/6)sin(π/6)=sin(2x-π/6)
最小正周期是2π/2=π,图象对称轴很容易知道是π/3+nπ/2
把[-π/12,π/2]代入2x-π/6,发现sin里的是[-π/3,7π/6]
那么一画图,值域是[-1/2,1]
cos(2x-π/3)+2sin(x-π/4)sin(x+π/4)=cos(2x-π/3)+cos2xcos(π/2)=cos(2x-π/3)
cos(2x-π/3)最小正周期为π
∴
f(x)最小正周期即为π
2sin(x-π/4)sin(x+π/4)=cos(x-π/4-x-π/4)-cos(x-π/4+x+π/4)=-cos2x
f(x)=cos(2x-π/3)-cos2x=cos(2x-π/6-π/6)-cos(2x-π/6+π/6)=2sin(2x-π/6)sin(π/6)=sin(2x-π/6)
最小正周期是2π/2=π,图象对称轴很容易知道是π/3+nπ/2
把[-π/12,π/2]代入2x-π/6,发现sin里的是[-π/3,7π/6]
那么一画图,值域是[-1/2,1]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询