定积分比较大小?
题目如图所示,答案是A,S2>S1好理解,但怎样用数学怎明2(b-a)介于两者之间呢?请高手指教!...
题目如图所示,答案是A,S2>S1好理解,但怎样用数学怎明2(b-a)介于两者之间呢?
请高手指教! 展开
请高手指教! 展开
2个回答
展开全部
这得利用凹凸函数证明
对于二阶可导的g函数,如果g''(x)<0,则g(x)是一个凸函数, g(x)= g(a*s +(1-s)b) <sg(a)+(1-s)g(b)=s +3(1-s) = 3-2s,( 其中x = as +(1-s)b, s= (b-x)/(b-a), 0<=s<=1)
ds = (b-x)/(b-a) = -1/(b-a) dx , dx = -(b-a)ds=(a-b)ds
那么∫g(x)dx |x=a,b < (a-b)∫3-2sds |s=1,0 = (a-b) *(3s-s^2)|1,0 =2(b-a)
同理可以证明∫f(x)dx |x=a,b > 2(b-a)
对于二阶可导的g函数,如果g''(x)<0,则g(x)是一个凸函数, g(x)= g(a*s +(1-s)b) <sg(a)+(1-s)g(b)=s +3(1-s) = 3-2s,( 其中x = as +(1-s)b, s= (b-x)/(b-a), 0<=s<=1)
ds = (b-x)/(b-a) = -1/(b-a) dx , dx = -(b-a)ds=(a-b)ds
那么∫g(x)dx |x=a,b < (a-b)∫3-2sds |s=1,0 = (a-b) *(3s-s^2)|1,0 =2(b-a)
同理可以证明∫f(x)dx |x=a,b > 2(b-a)
更多追问追答
追问
g(a*s +(1-s)b) <sg(a)+(1-s)g(b)
这怎么来的?
追答
凸函数的性质啊
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询