求证:在周长一定的矩形中正方形面积最大.

 我来答
玄策17
2022-07-01 · TA获得超过939个赞
知道小有建树答主
回答量:276
采纳率:100%
帮助的人:65.2万
展开全部
证明:设周长为定植a,矩形的长为x,则宽为a/2-x
所以面积s=x(a/2-x)=-x^2+(a/2)x=-(x-a/4)^2+a^2/16
此为关于x的二次函数当x=a/4时面积最大,最大面积为a^2/16
而x=a/4时,长、宽相等,即矩形为正方形时面积最大.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式