求齐次线性方程组
1个回答
展开全部
系数矩阵行列式 |A| =
|λ+4 3 0|
|4 0 1|
|-5 λ -1|
|A| =
|λ+4 3 0|
|-1 λ 0|
|-5 λ -1|
|A| = -(λ^2+4λ+3) = -(λ+1)(λ+3)
λ = -1, 或 λ = -3 时,|A| = 0, 齐次方程组有非零解。
λ = -1 时,A =
[ 3 3 0]
[ 4 0 1]
[-5 -1 -1]
初等行变换为
[ 1 1 0]
[ 0 -4 1]
[ 0 4 -1]
初等行变换为
[ 1 1 0]
[ 0 4 -1]
[ 0 0 0]
取 x3 = 4, 则 x2 = 1, x1 = -1, 通解 x = k(-1, 1, 4)^T;
λ = -3 时,A =
[ 1 3 0]
[ 4 0 1]
[-5 -3 -1]
初等行变换为
[ 1 3 0]
[ 0 -12 1]
[ 0 12 -1]
初等行变换为
[ 1 3 0]
[ 0 12 -1]
[ 0 0 0]
取 x3 = 12, 则 x2 = 1, x1 = -3, 通解 x = c(-3, 1, 12)^T.
|λ+4 3 0|
|4 0 1|
|-5 λ -1|
|A| =
|λ+4 3 0|
|-1 λ 0|
|-5 λ -1|
|A| = -(λ^2+4λ+3) = -(λ+1)(λ+3)
λ = -1, 或 λ = -3 时,|A| = 0, 齐次方程组有非零解。
λ = -1 时,A =
[ 3 3 0]
[ 4 0 1]
[-5 -1 -1]
初等行变换为
[ 1 1 0]
[ 0 -4 1]
[ 0 4 -1]
初等行变换为
[ 1 1 0]
[ 0 4 -1]
[ 0 0 0]
取 x3 = 4, 则 x2 = 1, x1 = -1, 通解 x = k(-1, 1, 4)^T;
λ = -3 时,A =
[ 1 3 0]
[ 4 0 1]
[-5 -3 -1]
初等行变换为
[ 1 3 0]
[ 0 -12 1]
[ 0 12 -1]
初等行变换为
[ 1 3 0]
[ 0 12 -1]
[ 0 0 0]
取 x3 = 12, 则 x2 = 1, x1 = -3, 通解 x = c(-3, 1, 12)^T.
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询