求极限~lim n[e-(1+1/n)^n] n->无穷 lim n[e-(1+1/n)^n] n->无穷
展开全部
lim(n->∞) n[e-(1+1/n)^n]
=lim(n->∞) n{ e-e^[nln(1+1/n)]}
=lim(n->∞) -e*n{ e^[nln(1+1/n) - 1] - 1 }
∵(n->∞) t = [nln(1+1/n) - 1] -> 0 ,e^t -1 t
=lim(n->∞) -e* n [nln(1+1/n) - 1]
∵ ln(1+1/n) = 1/n - 1/2n^2 + o(1/n^2) ,
注:此处极限也可用罗必塔法则
=lim(n->∞) -e* [ n - 1/2 + o(1) - n ]
= e/2
=lim(n->∞) n{ e-e^[nln(1+1/n)]}
=lim(n->∞) -e*n{ e^[nln(1+1/n) - 1] - 1 }
∵(n->∞) t = [nln(1+1/n) - 1] -> 0 ,e^t -1 t
=lim(n->∞) -e* n [nln(1+1/n) - 1]
∵ ln(1+1/n) = 1/n - 1/2n^2 + o(1/n^2) ,
注:此处极限也可用罗必塔法则
=lim(n->∞) -e* [ n - 1/2 + o(1) - n ]
= e/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询