求心形线P=a(1+cost)绕极轴旋转所得旋转体的体积
展开全部
由极坐标下曲线ρ=ρ(θ)绕极轴旋转所得的体积可以用以极点O为顶点,极径ρ为母线的圆锥体积增量来积分.以ρ=ρ(θ)为母线的圆锥的体积为V(ρ,θ)=(π/3)(ρsinθ)^2(ρcosθ)=(π/3)ρ^3(sinθ)^2cosθ将ρ=a(1+cosθ)代入上式,可得:V(ρ,θ)=V(θ)=(π/3)a^3(1+cosθ)^3(sinθ)^2cosθ令F(θ)=(1+cosθ)^3(sinθ)^2cosθ,则V(θ)=(1/3)πa^3F(θ)从而V(θ+dθ)=(1/3)πa^3F(θ+dθ),可得:dV=V(θ+dθ)-V(θ)=[dV(θ)/dθ]dθ当圆锥的顶角大于π/2时,V(θ+dθ)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
苏州谭祖自动化科技有限公司_
2024-11-13 广告
2024-11-13 广告
苏州谭祖自动化科技有限公司专业提供高速精密分割器,凸轮及其他五金配件。随着现代工业对自动化、高速化、高精度化的日益追求,更可靠的凸轮分度器已成为当今世界上精密驱动的主流装置.它们作为自动化机器的核心传动装置发挥着至关重要的作用。此产品广泛用...
点击进入详情页
本回答由苏州谭祖自动化科技有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询