如何理解排列与组合?

 我来答
心动Honey
2022-07-04 · TA获得超过9836个赞
知道答主
回答量:82
采纳率:100%
帮助的人:1.2万
展开全部

排列:

  1. A(m,n)=n(n-1)(n-2)...(n-m+1) 【A(m,n)表示从n个元素中取m个元素按一定次序的排列】。

【m---上标,n下标】,A(m,n) ---又成为选排列。

A(m,n)=n!/(n-m)!【n!---n的阶乘,即 n*n*n...】。

2.A(m,m)=m!【在m个元素中只考虑元素的次序的排列,即全排列】。

组合:

  1. C(m,n)=A(m,n)/A(m,m)=n!/m!(n-m)!.【从n个元素中取m个元素的组合】

  2. C(m,n)=C(n-m,n)

【从n个元素中取m个元素的组合=从n个元素中取( n-m)个元素的组合】

3.C(m,n+1)=C(m,n)+C(m-1,n)。

4. k*C(k,n)=n*C(k-1,n-1)。

另外,规定:C(0,n)=1,0!=1。

拓展资料:

排列组合的计算公式是:排列数,从n个中取m个排一下,有n(n-1)(n-2)...(n-m+1)种,即n/(n-m)
组合数,从n个中取m个,相当于不排,就是n/[(n-m)m]。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式