向量a,b,c共面怎么证明呢?
1个回答
展开全部
三个向量共面的充要条件:设三个向量是向量a,向量b,向量c,则向量a,向量b,向量c共线的充要条件是:存在两个实数x,y,使得向量a=x向量b+y向量c。
三向量共面的充要条件:存在两个实数x,y,使得向量a=x向量b+y向量c,共面定理的定义为能平移到一个平面上的三个向量称为共面向量,共面向量定理是数学学科的基本定理之一。
属于高中数学立体几何的教学范畴,主要用于证明两个向量共面,进而证明面面垂直等一系列复杂定理。
三个向量共面的充要条件介绍
设三个向量是向量a,向量b,向量c,则向量a,向量b,向量c共线的充要条件是:存在两个实数x,y,使得向量a=x向量b+y向量c,即一个向量可以写成另外两个向量的线性组合。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询