设函数f(x)=acosx+b的最大值是1,最小值是-3,试确定g(x)=bsin(ax+π/3)周期
展开全部
∵f(x)=acosx+b,-1≤cosx≤1
∴f(x)min = -|a|+b,f(x)max = |a| +b
最大值是1,最小值是-3
|a| +b = 1 ...(1)
-|a|+b = -3 ...(2)
(1)-(2)得:2|a| = 4,|a| = 2
(1)+(2)得:2b = -2,b = -1
g(x) = bsin(ax+π/3)
最小正周期 = 2π/|a| = 2π/2 = π
∴f(x)min = -|a|+b,f(x)max = |a| +b
最大值是1,最小值是-3
|a| +b = 1 ...(1)
-|a|+b = -3 ...(2)
(1)-(2)得:2|a| = 4,|a| = 2
(1)+(2)得:2b = -2,b = -1
g(x) = bsin(ax+π/3)
最小正周期 = 2π/|a| = 2π/2 = π
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询