设A为m阶正定矩阵,B是m*n实矩阵,且R(B)=n,证明B'AB也是正定矩阵

 我来答
温屿17
2022-07-29 · TA获得超过1.2万个赞
知道小有建树答主
回答量:827
采纳率:0%
帮助的人:95.8万
展开全部
首先证明任取n维列向量x≠0,Bx≠0
因为R(B)=n,所以存在B的n级子式不为0,不妨设B前n行构成的子式|B1|不为0,则若B1x=0必有x=0,矛盾.所以B1x≠0,所以Bx≠0.
这样因为A正定,任取x≠0,Bx≠0,所以x'B'ABx=(Bx)'A(Bx)>0
即,B'AB正定
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式