求答案数学。。。。

 我来答
成功的囚徒BZ
2023-03-15
知道答主
回答量:50
采纳率:50%
帮助的人:1.1万
展开全部
解:(1)如图1,延长BD至E,使BE=AB,连接AE、CE,
∵∠ABD=60°,
∴△ABE是等边三角形,
∴AE=AB,∠AEB=60°,
∵AB=AC,
∴AC=AE,
∴∠ACE=∠AEC,
∵∠ACD=60°,
∴∠ACE-∠ACD=∠AEC-∠AEB,
即∠DCE=∠DEC,
∴DE=CD,
∴BE=BD+DE=BD+CD,
∴AB=BD+CD;
故答案为:AB=BD+CD;
2)猜想:AB=

2

2
(BD+CD).
理由如下:如图2,过点A作AE⊥AB交BD的延长线于点E,连接CE,
∵∠ABD=45°,
∴△ABE是等腰直角三角形,
∴AE=AB,∠AEB=45°,
∵AB=AC,
∴AC=AE,
∴∠ACE=∠AEC,
∵∠ACD=45°,
∴∠ACE-∠ACD=∠AEC-∠AEB,
即∠DCE=∠DEC,
∴DE=CD,
∴BE=BD+DE=BD+CD,
在Rt△ABE中,AB=BE•cos∠ABD=(BD+CD)•cos45°=

2

2
(BD+CD),
即AB= 2 (BD+CD)
爱莉丶170
2015-03-29 · TA获得超过136个赞
知道答主
回答量:132
采纳率:100%
帮助的人:50.6万
展开全部
11. a3b2
12. 1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式