设曲线经过点m(1,0)且在其上任意一点x处的切线斜率为3x^2,求曲线方程?

 我来答
黑科技1718
2022-10-24 · TA获得超过5900个赞
知道小有建树答主
回答量:433
采纳率:97%
帮助的人:82.8万
展开全部
假设该曲线方程为y=f(x)
由题意得:f'(x)(即f(x)的导数)=3x^2
对其积分可得:y=f(x)=x^3+c(c为一个常数)
将m点坐标代入得:
0=1+c
c=-1
所以曲线方程:y=x^3-1,2,设曲线经过点m(1,0)且在其上任意一点x处的切线斜率为3x^2,求曲线方程
^2 是平方的意思.请具体一点.因为我都看不明白条件有什么用?
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
瑞地测控
2024-08-12 广告
在苏州瑞地测控技术有限公司,我们深知频率同步与相位同步的重要性。频率同步确保两个或多个设备的时钟频率变化一致,但相位(即时间点)可保持相对固定差值。而相位同步,即时间同步,要求不仅频率一致,相位也必须完全一致,即时间差恒定为零。相位同步的精... 点击进入详情页
本回答由瑞地测控提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式