怎样用穿针引线法解不等式?

 我来答
蔷祀
高粉答主

2023-01-18 · 关注我不会让你失望
知道小有建树答主
回答量:552
采纳率:100%
帮助的人:14.8万
展开全部

第一步

通过不等式的诸多性质对不等式进行移项,使得右侧为0。(注意:一定要保证最高次数项的系数为正数)

例如:将x^3-2x^2-x+2>0化为(x-2)(x-1)(x+1)>0

第二步

将不等号换成等号解出所有根。

例如:(x-2)(x-1)(x+1)=0的根为:x1=2,x2=1,x3=-1

第三步

在数轴上从左到右按照大小依次标出各根。

例如:-1 1 2

奇穿偶不穿

奇穿偶不穿

第四步

画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,一上一下依次穿过各根。

第五步

观察不等号,如果不等号为“>”,则取数轴上方,穿根线以内的范围;如果不等号为“<”,则取数轴下方,穿根线以内的范围。

例如:

若求(x-2)(x-1)(x+1)>0的根。

在数轴上标根得:-1 1 2

画穿根线:由右上方开始穿根。

因为不等号为“>”则取数轴上方,穿根线以内的范围。即:-1<x<1或x>2。

奇穿偶不穿:即假如有两个解都是同一个数字。这个数字要按照两个数字穿。如(x-1)^2=0 两个解都是1 ,那么穿的时候不要透过1。

奇穿偶不穿是指因式分解后X的指数次方如果是奇数可以用穿根法偶数就不能用一定要化简成奇数次方。

可以简单记为秘籍口诀:或“自上而下,从右到左,奇穿偶不穿”(也可以这样记忆:“自上而下,自右而左,奇穿偶回” 或“奇穿偶连”)。

扩展资料

注意事项:

运用序轴标根法解不等式时,常犯以下的错误:

问题一

出现形如(a-x)的一次因式时,勿匆忙地“穿针引线”。

例1 解不等式x(3-x)(x+1)(x-2)>0。

解 x(3-x)(x+1)(x-2)>0,将各根-1、0、2、3依次标在数轴上,由图1可得原不等式的解集为{x|x<-1或0<x<2或x>3}。

事实上,只有将因式(a-x)变为(x-a)的形式后才能用序轴标根法,正确的解法是:

【解】原不等式变形为x(x-3)(x+1)(x-2)<0,将各根-1、0、2、3依次标在数轴上,由图1,原不等式的解集为{x|-1<x<0或2<x<3}。

问题二

出现重根时,机械地“穿针引线”。

例2 解不等式(x+1)(x-1)^2(x-4)^3<0

解 将三个根-1、1、4标在数轴上,

原不等式的解集为{x|x<-1或1<x<4}。

这种解法也是错误的,错在不加分析地、机械地“穿针引线”。出现几个相同的根时,所画的浪线遇到“偶次”点(即偶数个相同根所对应的点)不能过数轴,仍在数轴的同侧折回,只有遇到“奇次”点(即奇数个相同根所对应的点)才能穿过数轴,正确的解法如下:

解 将三个根-1、1、4标在数轴上,画出浪线图来穿过各根对应点,遇到x=1的点时浪线不穿过数轴,仍在数轴的同侧折回;遇到x=4的点才穿过数轴,于是,可得到不等式的解集

{x|-1<x<4且x≠1}

参考资料

穿针引线法_百度百科

杨满川老师
2023-01-19 · 除了快乐和健康,还有数学题要研究
杨满川老师
采纳数:3123 获赞数:19690

向TA提问 私信TA
展开全部
一元高次不等式,
先求出一元高次方程的根,在序轴依次从小到大标注各根,从最右一个根依次穿过各根,大于取上方区间,小于取下方区间部分就是不等式的解集,注意奇穿偶不穿。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式