为什么齐次线性方程组的基础解系向量组为n-r

请帮我解决一下比较迷惑的地方,基础解系的概念是所有的解构成的解向量组的一个极大无关组,比如说把一个AX=0化简成了(120;023;000)它的秩等于2,基础解系中所含线... 请帮我解决一下比较迷惑的地方,基础解系的概念是所有的解构成的解向量组的一个极大无关组,比如说把一个AX=0化简成了(1 2 0;0 2 3;0 0 0)它的秩等于2,基础解系中所含线性无关的解向量个数,即为“基础解系所含解向量个数”,那么我感觉他的基础解系的向量组应该为2,这个好像对概念的理解不太对,请帮个忙解决一下,(手机)在线等。。。。 展开
介于石心
2019-09-02 · TA获得超过1万个赞
知道答主
回答量:73
采纳率:0%
帮助的人:1.2万
展开全部

因为把系数矩阵对角化以后,相关行向量对应的未知数为自由变量,令自由变量为不相关的向量时得到基础解,所以有几个自由变量,就可以得到几个基础解,而自由变量个数就是未知数的维数减去系数矩阵的秩。

例LZ提到的AX=0,因为化简后为(1 2 0;0 2 3;0 0 0),即rank(A)=2,所以基础解系中线性无关的向量个数就是3-2=1.也就是解空间的维数为1。

扩展资料

对齐次线性方程组的系数矩阵施行初等行变换化为阶梯型矩阵后,不全为零的行数r(即矩阵的秩)小于等于m(矩阵的行数),若m<n,则一定n>r,则其对应的阶梯型n-r个自由变元,这个n-r个自由变元可取任意取值,从而原方程组有非零解(无穷多个解)。

齐次线性方程组为aix+biy+ciz=0(i=1、2、3)组成的方程组,齐次线性方程组总有零解(x,y,z)=(0、0、0),当系数行列式不等于零时,它只有零解,当系数行列式等于零时,有无穷多个非零解。

参考资料来源:百度百科-齐次线性方程组

Sievers分析仪
2024-12-30 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
baisimu
推荐于2017-10-01 · TA获得超过7115个赞
知道小有建树答主
回答量:2460
采纳率:0%
帮助的人:483万
展开全部
注意基础解系的秩和系数矩阵的秩是两个概念,你的问题就是把这两者搞混了。
两者有一定关系:两者的和是未知数的维数。
这里就不给出严格证明了,如何理解,我简单地说一下:回顾一下基础解系是如何得来的?即把系数矩阵对角化以后,相关行向量对应的未知数为自由变量,令自由变量为不相关的向量时得到基础解。所以有几个自由变量,就可以得到几个基础解。而自由变量个数就是未知数的维数减去系数矩阵的秩。
举例:以LZ提到的AX=0,因为化简后为(1 2 0;0 2 3;0 0 0),即rank(A)=2,所以看第三行也就是x3不受影响,可以作为自由变量,给出一个赋值后得到了唯一的基础解。所以基础解系中线性无关的向量个数就是3-2=1.也就是解空间的维数为1.
同样对于n阶的如果rank(A)=m,则解空间维数就是n-m
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
文仙灵儿
2010-06-26 · TA获得超过9280个赞
知道大有可为答主
回答量:1340
采纳率:0%
帮助的人:2070万
展开全部
这题基础解系的中所含线性无关的解向量个数是1啊
满足n-r啊

一般你把系数矩阵化为最简梯矩阵后,如果主列是前r列的话,我们可以直接用构造矩阵法来得到基础解系的解向量,构造的方法就是把主列与非主列隔开,零行与非零行隔开,得到右上交的一个列数为n-r的矩阵,构造时直接在它下方补一个n-r阶单位阵即可,显然,有n-r个解向量

主列不是前r列的话,我们也可以通过换列得到是在前r列
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
莱情弘修伟
2019-07-13 · TA获得超过3866个赞
知道大有可为答主
回答量:3163
采纳率:30%
帮助的人:208万
展开全部
这个为什么很难说清楚,高代书上有的吧。因为n个变量减去r个秩
剩下的n减r就是基础解析,
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式