
锐角三角形角ABC所对的边是abc,b/a+a/b=6cosC则tahnC/tanA+tanC/tanB=
2个回答
2010-07-04
展开全部
因为a/b+b/a=6cosC,
所以a/b+b/a=6(a²+b²-c²)/2ab
所以c²=2(a²+b²)/3
tanC/tanA+tanC/tanB
=tanC(cosA/sinA+cosB/sinB)
=tanC(cosAsinB+sinAcocB)/(sinAsinB)
=tanCsinC/(sinAsinB)
=sinCsinC/(sinAsinBcosC)
=c²/abcosC
=c²/ab*[(a²+b²)/6ab]
=6c²/(a²+b²)
=4
所以a/b+b/a=6(a²+b²-c²)/2ab
所以c²=2(a²+b²)/3
tanC/tanA+tanC/tanB
=tanC(cosA/sinA+cosB/sinB)
=tanC(cosAsinB+sinAcocB)/(sinAsinB)
=tanCsinC/(sinAsinB)
=sinCsinC/(sinAsinBcosC)
=c²/abcosC
=c²/ab*[(a²+b²)/6ab]
=6c²/(a²+b²)
=4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询