(1)平面上有ABCD四个点,过其中任意两点画直线,请分析一下,可以画出多少条直线,并配图说明。
1、4 × 3 ÷ 2 = 6 (条)
2、n × (n - 1) ÷ 2 = n(n-1)/2 (条)
扩展资料:
直线由无数个点构成。直线是面的组成成分,并继而组成体。没有端点,向两端无限延长,长度无法度量。直线是轴对称图形。
它有无数条对称轴,其中一条是它本身,还有所有与它垂直的直线(有无数条)对称轴。在平面上过不重合的两点有且只有一条直线,即不重合两点确定一条直线。在球面上,过两点可以做无数条类似直线。
构成几何图形的最基本元素。在D·希尔伯特建立的欧几里德几何的公理体系中,点、直线、平面属于基本概念,由他们之间的关联关系和五组公理来界定。
距离
异面直线的距离:l1、l2为异面直线,l1,l2公垂直线的方向向量为n、C、D为l1、l2上任意一点,l1到l2的距离为|AB|=|CD*n|/|n|
点到平面的距离:设PA为平面的一条斜线,O是P点在a内的射影,PA和a所成的角为b,n为a的法向量。
易得:|PO|=|PA|sinb=|PA|*|cos<PA,n>|=|PA|*(|PA*n|/|PA||n|)=|PA*n|/|PA|
直线到平面的距离为在直线上一点到平面的距离;
点到直线的距离:A∈l,O是P点在l上的射影,PA和l所成的角为b,s为l的方向向量。
易得:|PO|=|PA|*|sinb|=|PA|*|sin<PA,s>|=|(PA|2|s|2|-|PA*s|2)1/2/|s|
平面内:直线ax+by+c=0到M(m,n)的距离为|am+bn+c|/(a2+b2)1/2
平行直线:l1:ax+by+c=0,l2:ax+by+d=0,l1到l2的距离为|c-d|/(a2+b2)1/2
参考资料:百度百科-直线
第二问,根据第一问的规律,设N点中任意三点不共线,那么一共可以画(n-1)+(n-2)+.....+1=[n(n-1)]/2 (此时用的是等差数列求和公式)
第一问你可以画个矩形,取其四定点为A,B,C,D ,同理第二问也一样,取N边形(这么取的目的是让任意三点不共线)