已知向量m=(sinx,-1),n=(根号3cosx,-1/2),函数f(x)=m^2+m•n-2
已知向量m=(sinx,-1),n=(根号3cosx,-1/2),函数f(x)=m^2+m•n-2。三角形ABC中a,b,c成等比数列,角B为内角,且f(B)...
已知向量m=(sinx,-1),n=(根号3cosx,-1/2),函数f(x)=m^2+m•n-2。三角形ABC中a,b,c成等比数列,角B为内角,且f(B)=1,求1/tanA+1/tanC
展开
1个回答
展开全部
已知向量m=(sinx,-1),n=(根号3cosx,-1/2),函数f(x)=m^2+m•n-2。三角形ABC中a,b,c成等比数列,角B为内角,且f(B)=1,求1/tanA+1/tanC
解析:∵向量m=(sinx,-1),n=(根号3cosx,-1/2)
∴向量m*向量m=(sinx)^2+1;向量m*向量n=√3/2sin2x+1/2;
∴f(x)=m^2+m•n-2=(sinx)^2+√3/2sin2x+3/2-2
=1/2(1-cos2x)+√3/2sin2x+3/2-2
=√3/2sin2x-1/2cos2x)+2-2
=sin(2x-π/6)
令f(B)=sin(2B-π/6)=1
sin(2B-π/6)-1=0==>2B-π/6=π/2==>B=π/3
1/tanA+1/tanC=cosA/sinA+cosC/sinC=sin(A+C)/(sinAsinC)
∵a,b,c成等比数列,∴b^2=ac
由正弦定理得(sinB)^2=sinAsinC,
∴1/tanA+1/tanC=sin(A+C)/(sinAsinC)=sinB/(sinB)^2=1/sinB=2√3/3
解析:∵向量m=(sinx,-1),n=(根号3cosx,-1/2)
∴向量m*向量m=(sinx)^2+1;向量m*向量n=√3/2sin2x+1/2;
∴f(x)=m^2+m•n-2=(sinx)^2+√3/2sin2x+3/2-2
=1/2(1-cos2x)+√3/2sin2x+3/2-2
=√3/2sin2x-1/2cos2x)+2-2
=sin(2x-π/6)
令f(B)=sin(2B-π/6)=1
sin(2B-π/6)-1=0==>2B-π/6=π/2==>B=π/3
1/tanA+1/tanC=cosA/sinA+cosC/sinC=sin(A+C)/(sinAsinC)
∵a,b,c成等比数列,∴b^2=ac
由正弦定理得(sinB)^2=sinAsinC,
∴1/tanA+1/tanC=sin(A+C)/(sinAsinC)=sinB/(sinB)^2=1/sinB=2√3/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询